• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
ZHOU Changsong, ZOU Shengzhang, LU Haiping, XIA Riyuan, LU Li, WANG Jia, JIQIN Kebuzi, LIN Yongsheng, FAN Lianjie, ZHAO Yi, LI Jun, YANG Yeyu, DENG Rixin, WEI Xianyu, WU Shucheng. Key technical points for integrated surface water-groundwater surveys and assessment in karst basins of South China[J]. CARSOLOGICA SINICA, 2025, 44(5): 912-927. doi: 10.11932/karst2025y019
Citation: ZHOU Changsong, ZOU Shengzhang, LU Haiping, XIA Riyuan, LU Li, WANG Jia, JIQIN Kebuzi, LIN Yongsheng, FAN Lianjie, ZHAO Yi, LI Jun, YANG Yeyu, DENG Rixin, WEI Xianyu, WU Shucheng. Key technical points for integrated surface water-groundwater surveys and assessment in karst basins of South China[J]. CARSOLOGICA SINICA, 2025, 44(5): 912-927. doi: 10.11932/karst2025y019

Key technical points for integrated surface water-groundwater surveys and assessment in karst basins of South China

doi: 10.11932/karst2025y019
  • Received Date: 2025-03-29
  • Accepted Date: 2025-09-27
  • Rev Recd Date: 2025-05-08
  • Available Online: 2026-01-13
  • This study focuses on the karst region of South China, centered in Guizhou Province and encompassing Yunnan, Guangxi, Hunan, Hubei, Sichuan, Chongqing, and Guangdong. The study area covers 780,000 km² with survey data indicating 520,000 km² of exposed karst and 260,000 km² of covered or buried karst. Karst water resources in the region amount to 169.536 billion m³·a−1, representing 83.12% of China's total karst water resources. Characterized by a tropical-subtropical monsoon climate-with annual rainfall ranging from 1,000 to 2,200 mm, 60% to 80% of which occurs between May and September-the region exhibits complex hydrogeological structures. These include highly heterogeneous aquifers, frequent surface water–groundwater (SW–GW) transformations (with more than 13 types), rapid flow dynamics (conduit flow velocities exceeding 80 m·h−1 during wet seasons), and marked ecological vulnerability.Since the 1970s, with collaborative efforts, the China Geological Survey (CGS) and provincial departments have completed 1:250,000-scale hydrogeological surveys covering 780,000 km² and 1:50,000-scale hydrogeological surveys covering 350,000 km². Despite the accumulation of extensive data, no integrated technical standards have been established. The 2023 Notice on Carrying out Water Resource Baseline Surveys, issued by the Ministry of Natural Resources, mandates unified investigations of all water bodies. Against this backdrop, this study aims to: (1) systematically define the unique characteristics of water resources and hydrological cycles of the karst areas in Southern China; (2) construct an integrated SW–GW investigation and evaluation framework; (3) identify key technical challenges and propose solutions.Based on four decades of survey data and relevant literature, we systematically synthesized the characteristics of water resources and hydrological cycle. By integrating current standards (e.g., DD 2019-01, DZ/T 0469-2024) with karst-specific practices, we developed a comprehensive technical workflow. The key results are as follows: (1) Characteristics and Patterns: Seven water resource traits were identified: systemic structural complexity, spatiotemporal heterogeneity of resources, frequent SW–GW exchange, occurrence heterogeneity, hydrochemical erosivity, geomorphological control, and ecological vulnerability. Six hydrological patterns were observed: diverse circulation pathways; close interconnection among atmospheric precipitation, surface water, and groundwater; the high-frequency exchange; rapid flow velocity; multi-layer aquifer connectivity; and coexistence of fast and slow flows. (2) Technical Framework: A six-phase workflow was established: pre-survey planning → field investigation → monitoring → evaluation → database development → reporting. This approach replaces traditional map-based surveys with karst watershed units. (3) Critical Technical Solutions: Unit delineation-Level V karst water systems were designated as core assessment units. Boundary identification-discriminant boundaries were determined based on hydrodynamic fields and geological structures. SW–GW flux quantification-13 transformation subtypes were defined, each with corresponding monitoring strategies. Hydrological process characterization-differentiation was based on the intensity of karst development. Monitoring network optimization-stratified deployment was implemented according to aquifer structure; at least one surface water or groundwater monitoring site per system, with denser coverage at critical exchange nodes (e.g., sinkholes, spring clusters). Evaluation methods-scale-adapted models, such as Modflow-CFP, were applied for small basins. The integrated framework addresses technical gaps in holistic SW–GW assessment for karst regions in South China, effectively resolving challenges of spatial heterogeneity and dynamic transformations. The six technical pillars-unit delineation, boundary identification, transformation quantification, process characterization, monitoring optimization, and scale-adapted evaluation-provide standardized support for water resource surveys and sustainable management.

     

  • loading
  • [1]
    袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼. 现代岩溶学[M]. 北京: 科学出版社, 2016: 1-2.
    [2]
    卢海平, 张发旺, 赵春红, 夏日元, 梁永平. 我国南北方岩溶差异[J]. 中国矿业, 2018, 27(S2): 317-319.

    LU Haipig, ZHANG Fawang, ZHAO Chunhong, XIA Riyuan, LIANG Yongping. Differences between southern karst and northern karst besides scientific issues that need attention[J]. China Mining Magaine, 2018, 27(S2): 317-319.
    [3]
    卢耀如, 杰显义, 张上林, 赵成樑, 刘福灿. 中国岩溶(喀斯特)发育规律及其若干水文地质工程地质条件[J]. 地质学报, 1973(1): 121-136,141.
    [4]
    夏日元, 邹胜章, 唐建生, 梁彬, 曹建文, 卢海平. 南方岩溶地区1: 5万水文地质环境地质调查技术要点分析[J]. 中国岩溶, 2017, 36(5): 599-608.

    XIA Riyuan, ZOU Shengzhang, TANG Jiansheng, LIANG Bin, CAO Jianwen, LU Haiping. Technical key points of 1: 50 , 000 hydrogeological and environmental geology surveys in karst areas of South China [J]. Carsologica Sinica, 2017, 36(5): 599-608.
    [5]
    王宇. 南方岩溶地区水文地质调查的问题与改进措施[J]. 中国岩溶, 2023, 42(4): 627-635.

    WANG Yu. Problems and their countermeasures in a hydrogeological survey of karst areas in South China[J]. Carsologica Sinica, 2023, 42(4): 627-635.
    [6]
    中国地质调查局. 水文地质与水资源调查评价技术要求(DD 2019-01)[S]. 北京: 地质出版社, 2019.
    [7]
    中国地质调查局. 1: 5万水文地质调查规范(DZ/T 0282-2024) [S]. 北京: 地质出版社, 2015.
    [8]
    中国地质调查局. 1: 250 000区域水文地质调查技术要求(DD 2004-01)[S]. 北京: 地质出版社, 2004.
    [9]
    李原园, 李云玲, 仇亚琴, 张象明, 宋秋波, 陈 飞, 潘扎荣, 赵钟楠, 常 帅, 羊 艳, 何奇峰, 唱 彤, 杜 霞, 刘 婷, 郭东阳, 马 睿, 孙素艳, 郝春沣,张 越, 杜军凯. 水资源评价导则(SL/T238-2025)[S]. 北京: 中华人民共和国水利部, 2025.
    [10]
    中国地质调查局. 水文地质手册(第二版)[M]. 北京: 地质出版社, 2012.
    [11]
    路洪海, 章程. 中国西南地区岩溶水资源的特点及可持续利用对策[J]. 西华师范大学学报(自然科学版), 2006(2): 139-142.

    LU Honghai, ZHANG Cheng. Characteristics of karst water resource in south west China and its sustainable exploitation and utilization[J]. Journal of China West Nornal University(Natural Sciences), 2006(2): 139-142.
    [12]
    单海平, 邓军. 我国西南地区岩溶水资源的基本特征及其和谐利用对策[J]. 中国岩溶, 2006, 25(4): 324-329.

    SHAN Haiping, DENG Jun. Basic features and counter-measures for harmonious use of karst water in southwest China[J]. Carsologica Sinica, 2006, 25(4): 324-329.
    [13]
    陈洪吟. 南方岩溶区水文地质基本规律[R]. 贵阳: 贵州111地质队, 1978.
    [14]
    张红波, 杨森, 甘鑫, 罗富恒. 典型背斜槽谷区岩溶水资源空间分布格局与水质特征: 以宜居河流域为例[J]. 中国岩溶, 2018, 37(1): 27-36.

    ZHANG Hongbo, YANG Sen, GAN Xing, LUO Fuheng. Study of the spatial distribution pattern and water quality characteristics of karst water resources in a typical anticlinal trough valley: A case study of Yiju river basin[J]. Carsologica Sinica, 2018, 37(1): 27-36.
    [15]
    张贵, 何绕生, 王波, 张文鋆, 周翠琼. 云南华宁县盘溪大龙潭水文地质特征[J]. 贵州大学学报(自然科学版), 2020, 37(5): 40-45.

    ZHANG Gui, HE Raosheng, WANG Bo, ZHANG Wenyun, ZHOU Cuiqiong. Hydrogeological characteristics of Dalongtan, Panxi, Huaning county of Yunnan province[J]. Journal of Guizhou University( Natural Sciences), 2020, 37(5): 40-45.
    [16]
    裴建国, 梁茂珍, 陈阵. 西南岩溶石山地区岩溶地下水系统划分及其主要特征值统计[J]. 中国岩溶, 2008, 27(1): 6-10.

    PEI Jianguo, LIANG Maozhen, CHEN Zhen. Classification of karst groundwater system and statistics of the main characteristic values in Southwest China karst mountain[J]. Carsologica Sinica, 2008, 27(1): 6-10.
    [17]
    易连兴, 夏日元, 王喆. 岩溶地下河探测与评价[M]. 北京: 科学出版社, 2018: 241.

    YI Lianxing, XIA Riyuan, WANG Zhe. Detection and evaluation of karst underground rivers [M]. Beijing: Science Press, 2018: 241.
    [18]
    梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199-219.

    LIANG Yongping, SHEN Haoyong, GAO Xubo. Review of research progress of karst groundwater in northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 199-219.
    [19]
    周长松, 邹胜章, 冯启言, 朱丹尼, 李军, 王佳, 谢浩, 邓日欣. 岩溶关键带水文地球化学研究进展[J]. 地学前缘, 2022, 29(3): 37-50.

    ZHOU Changsong, ZOU Shengzhang, FENG Qiyan, ZHU Danni, LI Jun, WANG Jia, XIE Hao, DENG Rixin. Progress in hydrogeochemical study of Karst Critical Zone: A critical review[J]. Earth Science Frontier, 2022, 29(3): 37-50.
    [20]
    邹胜章, 夏日元, 刘莉, 唐建生, 梁彬. 塔河油田奥陶系岩溶储层垂向带发育特征及其识别标准[J]. 地质学报, 2016, 90(9): 2490-2501.

    ZOU Shengzhang, XIA Riyuan, LIU Li, TANG Jiansheng, LIANG Bin. Vertical zone characteristics and identification standard of ordovician karst reservoirs in the Tahe Oilfield[J]. Acta Geologica Sinica, 2016, 90(9): 2490-2501.
    [21]
    卢耀如. 中国岩溶地区水文环境与水资源模式[J]. 中国岩溶, 1988, 7(3): 184-189.

    LU Yaoru. Hydrological environment and water resources model in karst areas of China[J]. Carsologica Sinica, 1988, 7(3): 184-189.
    [22]
    康志强, 何师意, 罗允义. 表层岩溶系统水化学成因及植被恢复条件下变化趋势: 以广西马山弄拉兰电堂泉为例[J]. 吉林大学学报(地球科学版), 2015, 45(1): 232-239.

    KANG Zhiqiang, HE Shiyi, LUO Yunyi. Cause and change trend of water chemistry of epikarst system under the vegetation restoration: A case of Landiantang epikarst spring, Nongla, Mashan, Guangxi[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(1): 232-239.
    [23]
    卢耀如. 中国南方喀斯特发育基本规律的初步研究[J]. 地质学报, 1965(1): 108-129.

    LU Yaoru. Preliminary study on the basic development patterns of karst in Southern China[J]. Acta Geologica Sinica, 1965(1): 108-129.
    [24]
    薛禹群, 吴吉春. 地下水动力学(第3版)[M]. 北京: 地质出版社, 2010.

    XUE Yuqun, WU Jichun. Groundwater dynamics (3rd Edition) [M]. Beijing: Geological Press, 2010.
    [25]
    罗明明. 南方岩溶水循环的物理机制及数学模型研究[D]. 武汉: 中国地质大学, 2017.

    LUO Mingming. The physical machanism and methematical model of karst water circulation: A case study of the Xiangxi river Karst Basin, South China [D]. Wuhan: China University of Geosciences, 2017.
    [26]
    邹胜章, 杨苗清, 陈宏峰, 朱丹尼, 周长松, 李录娟, 谢浩. 地下河系统水动态监测网络优化对比分析: 以桂林海洋—寨底地下河系统为例[J]. 地学前缘, 2019, 26(1): 326-335.

    ZOU Shengzhang, YANG Miaoqing, CHEN Hongfeng, ZHU Danni, ZHOU Changsong, LI Lujuan, XIE Hao. Optimizat ion and comparison of water dynamic monitoring network for underground river system: A case of Haiyang- Zhaidi underground river system of Guilin [J]. Earth Science Frontier, 2019, 26(1): 326-335.
    [27]
    卢丽, 邹胜章, 赵一, 樊连杰, 林永生, 王喆. 桂林会仙湿地狮子岩地下河系统水循环对降水的响应[J]. 水文地质工程地质, 2022, 49(5): 63-72.

    LU Li, ZOU Shengzhang, ZHAO Yi, FAN Lianjie, LIN Yongsheng, WANG Zhe. Response of water cycle to precipitation in Shizhiyan underground river system in Huixian wetland of Guilin[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 63-72.
    [28]
    宋涛. 典型表层岩溶带五水转化过程及水均衡分析[D]. 北京: 中国地质大学(北京), 2022.

    SONG Tao. Five water transformation processes and water balance analysis in typical epikarst zones [D]. Beijing: China University of Geosciences(Beijing), 2022.
    [29]
    Webster Noah. An American Dictionary of the English Language [M]. New York: S. Converse, 1828.
    [30]
    姬长玉. 推动地表水地下水一体化调查[N]. 中国矿业报. 2024年3月12日第002版.
    [31]
    全国自然资源与国土空间规划标准化技术委员. 地下水资源调查评价规范(DZ/T 0469-2024 )[Z]. 2024.
    [32]
    梁永平, 张发旺, 申豪勇. 北方岩溶地区水文地质环境地质调查技术要求[M]. 桂林: 中国地质科学院岩溶地质研究所, 2015.

    LIANG Yongping, ZHANG Fawang, SHEN Haoyong. Technical requirements for hydrogeological environmental geological survey in Northern Karst areas [M]. Guilin: Institute of Karst Geology, Chinese Academy of Geological Sciences, 2015.
    [33]
    时坚, 蒋忠诚, 裴建国, 程伯禹, 钱小锷, 曾华烟, 王宇, 鄢毅, 王明章, 刘安云, 盛玉环, 谢运球, 周立新. 岩溶地区1: 50 000水文地质调查技术要求[M]. 北京: 中国地质调查局, 2008.

    SHI Jian, JIANG Zhongcheng, PEI Jianguo, CHENG Boyu, QIAN Xiaoe, ZENG Huayan, WANG Yu, YAN Yi, WANG Mingzhang, LIU Anyun, SHENG Yuhuan, XIE Yunqiu, ZHOU Lixin . Technical requirements for 1: 50, 000 hydrogeological survey in Karst Areas [M]. Beijing: China Geological Survey, 2008.
    [34]
    自然资源部办公厅. 水资源基础调查方案[N]. 自然资源部官网, 2024-3-11. https://gi.mnr.gov.cn/202403/t20240315_2839736.html
    [35]
    周长松, 邹胜章, 黄奇波, 卢丽, 樊连杰, 林永生, 申豪勇, 周宏, 赵斌, 吉勤克补子, 康志强, 李德龙, 温金梅, 李强, 谢浩, 陈洪年, 罗明明, 卢海平, 王佳, 赵一, 敬正凯, 戴振芬, 曹建文, 程洋, 易世友. 岩溶流域地表水地下水一体化调查评价指南(TGXAS 869-2024) [S]. 广西标准协会, 2024.
    [36]
    李文鹏. “水文地质与水资源调查计划”进展[J]. 水文地质工程地质, 2022, 49(2): 1-6.

    LI Wenpeng. Achievements of investigation program on hydrogeology and water resources of CGS[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 1-6.
    [37]
    王宇. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J]. 中国岩溶, 2019, 38(6): 823-830.

    WANG Yu. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 2019, 38(6): 823-830.
    [38]
    周长松, 焦恒, 邹胜章, 吉勤克补子, 卢丽, 王佳, 卢海平, 陈宏峰, 易世友. 一种岩溶地下河系统边界确定方法: 中国, 202410657143.3 [P]. 2024-11-26.
    [39]
    杨杨, 赵良杰, 潘晓东, 夏日元, 曹建文. 西南岩溶山区地下水资源评价方法对比研究: 以寨底地下河流域为例[J]. 中国岩溶, 2022, 41(1): 111-123.

    YANG Yang, ZHAO Liangjie, PAN Xiaodong, XIA Riyuan, CAO Jianwen. Comparative study on evaluation methods of groundwater resources in karst area of Southwest China: Taking Zhaidi underground river basin as an example[J]. Carsologica Sinica, 2022, 41(1): 111-123.
    [40]
    杨杨, 赵良杰, 苏春田, 夏日元. 基于CFP的岩溶管道流溶质运移数值模拟研究[J]. 水文地质工程地质, 2019, 46(4): 51-57.

    YANG Yang, ZHAO Liangjie, SU Chuntian, XIA Riyuan. A study of the solute transport model for karst conduits based on CFP [J]. Hydrogeology & Engineering Geology, 2019, 46(4): 51-57.
    [41]
    赵良杰, 杨杨, 曹建文, 夏日元, 王喆, 栾崧, 林玉山. 珠江流域地下水资源评价及问题分析[J]. 中国地质, 2021, 48(4): 1020-1031.

    ZHAO Liangjie, YANG Yang, CAO Jianwen, XIA Riyuan, WANG Zhe, LUAN Song, LIN Yushan. Groundwater resources evaluation and problem analysis in Pearl River Basin[J]. Geology in China, 2021, 48(4): 1020-1031.
    [42]
    刘文冲, 赵良杰, 崔亚莉, 曹建文, 王莹, 李美玲. 基于SWAT-MODFLOW地表—地下水耦合模型的结构与应用研究[J]. 中国岩溶, 2023, 42(6): 1131-1139.

    LIU Wenchong, ZHAO Liangjie, CUI Yali, CAO Jianwen, WANG Ying, LI Meiling. Structure and application of SWAT-MODFLOW coupling model for surface- groundwater[J]. Carsologica Sinica, 2023, 42(6): 1131-1139.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return