• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 6
Dec.  2025
Turn off MathJax
Article Contents
WANG Xiaohu, WANG Ping, WANG Xianneng, LAI Anfeng. Genesis and karst characteristics of marble agglomerate in volcanic rocks on the eastern slope of Wutong Mountain, Shenzhen[J]. CARSOLOGICA SINICA, 2025, 44(6): 1186-1197. doi: 10.11932/karst20250603
Citation: WANG Xiaohu, WANG Ping, WANG Xianneng, LAI Anfeng. Genesis and karst characteristics of marble agglomerate in volcanic rocks on the eastern slope of Wutong Mountain, Shenzhen[J]. CARSOLOGICA SINICA, 2025, 44(6): 1186-1197. doi: 10.11932/karst20250603

Genesis and karst characteristics of marble agglomerate in volcanic rocks on the eastern slope of Wutong Mountain, Shenzhen

doi: 10.11932/karst20250603
  • Received Date: 2024-09-02
  • Accepted Date: 2025-05-09
  • Rev Recd Date: 2025-02-21
  • Karst phenomena, such as fissures and caves, occur in the marble agglomerate of pyroclastic rocks on the eastern slope of Shenzhen’s Wutong Mountain. These features have affected the engineering projects such as subway construction and pile foundation engineering in the study area. This study collected numerous borehole histograms and data on multi-phase geological surveys from the Wutong Mountain area, interpreted volcanic structures using airborne LiDAR data from the middle and eastern parts of Wutong Mountain, and conducted engineering geological ground surveys in the study area. The study shows: (1) Marble agglomerate volcanic rocks on the eastern slope of Wutong Mountain are distributed in the explosive collapse phase rocks of the second eruptive cycle of Wutong Mountain’s volcanic activity. It is inferred that the karst area within these volcanic rocks is located in the Wangjihu–Xiao’ao volcanic structural depression, covering total area of about 1.826 km2. (2) It is further inferred that the marble agglomerate in the volcanic rock, originated from the limestone in the lower Carboniferous Shidengzi Formation (C1s) within the volcanic channel, formed during early intense eruptions. Prior to the volcanic eruption, magma compression and gas explosions caused the surrounding rock to fracture and collapse. During the volcanic eruption, the release of magma pressure propelled the fragmented and collapsed surrounding rock material to the surface, where it mingled with magma and solidified into the volcanic rock. (3) Due to the favorable groundwater circulation and alternating conditions in the study area, the marble agglomerates have undergone erosion, resulting in karst morphology primarily characterized by small and medium-sized caves. The connectivity between these caves is poor, and the degree of karst development ranges from weak to moderate. (4) The development of karst is influenced by fault structures, depth, topographic features, and the degree of weathering, exhibiting strong zoning and heterogeneity. Karst development pronounced in the NE direction, followed by the EW and NW directions, which aligns with the main orientations of regional faults. Karst is more developed in sections with burial depths of 10 to 20 m and 50 to 60 m, and at elevations of 30 to 40 m and 50 to 60 m. Karst development is stronger in valley areas and weaker on hillside. It is most developed in strongly to moderately weathered zones, followed by the residual soil to completely weathered zones, while karst development is weak in slightly weathered area. This study innovatively analyzes the formation of marble agglomerations based on the history of volcanic eruption. Through DEM data interpretation, Wutong Mountain is shown to have evolved from early "central eruption + peripheral multi-point eruption" phase to a later "central eruption" phase. It is inferred that early intense eruptions formed marble-bearing agglomerated volcanic rocks. Due to the weakening of eruption intensity and the lengthening of eruption path during the middle and late stages, the limestone blocks failed to integrate into the volcanic rock mass. Most of Wutong Mountain’s large block-bearing volcanic rocks were subsequently covered by later eruption materials, while the eastern periphery was exposed or shallowly buried due to fewer eruption events, providing favorable conditions for the subsequent dissolution of marble agglomerations. The research findings will provide a foundation for the prevention and control of karst environmental geology and engineering geological problems in the volcanic rock area of Wutong Mountain as well as provide a reference for karst research in similar volcanic rock areas.

     

  • loading
  • [1]
    贾建业, 孙杰, 詹文欢, 易顺民. 深圳市地质环境现状及主要问题分析[J]. 工程地质学报, 2006, 14(S1): 33-37.

    JIA Jianye, SUN Jie, ZHAN Wenhuan, YI Shunmin. The current situation and problem of geological environment in shenzhen city[J]. Journal of Engineering Geology, 2006, 14(S1): 33-37.
    [2]
    吴晟堂, 蒋小珍, 马骁, 汤振. 岩溶地下工程地质环境影响区范围划定初步研究: 以深圳市龙岗区基坑降水为例[J]. 中国岩溶, 2022, 41(5): 825-837.

    WU Shengtang, JIANG Xiaozhen, MA Xiao, TANG Zhen. Study on the delimitation of affected zone of geological environment for karstunderground engineering: taking Longgang district, Shenzhen City as an example[J]. Carsologica Sinica, 2022, 41(5): 825-837.
    [3]
    叶维国. 深圳市龙岗岩溶塌陷灾害及防治对策[J]. 广东地质, 2002, 17(4): 42-49.

    YE Weiguo. Karst collapse disasters and prevention measures in Longgang district, Shenzhen[J]. Guangdong Geology, 2002, 17(4): 42-49.
    [4]
    邹才能, 赵文智, 贾承造, 朱如凯, 张光亚, 赵霞, 袁选俊. 中国沉积盆地火山岩油气藏形成与分布[J]. 石油勘探与开发, 2008, 35(3): 257-271. doi: 10.3321/j.issn:1000-0747.2008.03.001

    ZOU Caineng, ZHAO Wenzhi, JIA Chengzao, ZHU Rukai, ZHANG Guangya, ZHAO Xia, YUAN Xuanjun. Formation and distribution of volcanic hydrocarbon reservoirs in sedimentary basins of China[J]. Petroleum exploration and development, 2008, 35(3): 257-271. doi: 10.3321/j.issn:1000-0747.2008.03.001
    [5]
    张玉银. 溶蚀作用对火山岩有效储层形成的控制作用: 以松辽盆地徐家围子断陷营城组为例[J]. 石油与天然气地质, 2018, 39(03): 587-593.

    ZHANG Yuyin. Controlling effect of dissolution on valid volcanic reservoir formation: A case study of the Yingcheng Formation in the Xujiaweizi Fault Depression Songliao Basin[J]. Oil & Gas Geology, 2018, 39(3): 587-593.
    [6]
    黄金富, 王啊丽, 夏国朝, 刘东成, 张海霞. 喷发相火山岩储层特征研究及地质意义[J]. 非常规油气, 2023, 10(6): 27-34.

    HUANG Jinfu, WANG Ali, XIA Guochao, LIU Dongcheng, ZHANG Haixia. Study on reservoir charaeteristics of eruptive facies volcanic rock and its geological significance[J]. Unconventional Oil & Gas, 2023, 10(6): 27-34.
    [7]
    张新涛, 张藜, 刘晓健. 渤海湾盆地渤中凹陷中生界火山岩优质储层发育规律[J]. 吉林大学学报(地球科学版), 2023, 53(1): 1-16.

    ZHANG Xintao, ZHANG Li, LIU Xiaojian. Development regularity of the mesozoic volcanic reservoir in Bozhong Sag, Bohai Bay Basin, China[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(1): 1-16.
    [8]
    徐长贵, 张功成, 黄胜兵, 单玄龙, 李嘉慧. 渤海湾盆地海域白垩系大中型火山岩油气藏形成条件[J]. 石油勘探与开发, 2024, 51(3): 467-477. doi: 10.11698/PED.20230288

    XU Changgui, ZHANG Gongcheng, HUANG Shengbing, SHAN Xuanlong LI Jiahui. Formation of large− and medium−sized Cretaceous volcanic reservoirs in the offshore Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2024, 51(3): 467-477. doi: 10.11698/PED.20230288
    [9]
    刘秀金, 刘伟, 刘丽娟, 尚海军, 刘国仁. 阿尔泰南缘麦兹火山—沉积盆地东部萨吾斯铅锌矿床成因探讨[J]. 岩石学报, 2011, 27(6): 1810-1828.

    LIU Xiujin, LIU Wei, LIU Lijuan, SHANG Haijun, LIU Guoren. Genesis of the Sawusi lead-zinc deposit in the eastern Maizi volcanic-sedimentary basin, southern Altay Mountains[J]. Acta Petrologica Sinica, 2011, 27(6): 1810-1828.
    [10]
    耿全如, 潘桂棠, 金振民, 王立全, 朱弟成, 廖忠礼. 西藏冈底斯带叶巴组火山岩地球化学及成因[J]. 地球科学, 2005, 30(6): 747-760. doi: 10.3321/j.issn:1000-2383.2005.06.011

    GENG Quanru, PAN Guitang, JIN Zhenmin, WANG Liquan, ZHU Dicheng, LIAO Zhongli. Geochemistry and Genesis of the Yeba Volcanic Rocks in the Gangdise Magmatic Arc, Tibet[J]. Earth Science, 2005, 30(6): 747-760. doi: 10.3321/j.issn:1000-2383.2005.06.011
    [11]
    丁帅, 唐菊兴, 郑文宝, 姚晓峰. 西藏知不拉铜多金属矿床地质、石榴子石分带特征及其地质意义[J]. 岩石矿物学杂志, 2014, 33(2): 294-306. doi: 10.3969/j.issn.1000-6524.2014.02.008

    DING Shuai, TANG Juxing, ZHENG Wenbao, YAO Xiaofeng. Geological and garnet zoning characteristics of the Zhibula copper polymetallic deposit in Tibet and their significance[J]. Acta Petrologica et Mineralogica, 2014, 33(2): 294-306. doi: 10.3969/j.issn.1000-6524.2014.02.008
    [12]
    徐净, 郑有业, 孙祥, 姜军胜, 耿瑞瑞, 申亚辉. 西藏知不拉矽卡岩型铜矿床矿物学特征及地质意义[J]. 地球科学, 2014, 39(6): 654-670,768.

    XU Jing, ZHENG Youye, SUN Xiang, JIANG Junsheng,. Mineralogical Characteristics of Zhibula Skarn−Type Cu Deposit in Tibet and Their Geological Significance[J]. Earth Science, 2014, 39(6): 654-670,768.
    [13]
    梁敦杰, 郭日恒, 潘岐祥, 等. 1∶5万宝安幅、蛇口幅、深圳市幅、王母圩幅区域地质调查报告[R]. 广东: 广东省地质矿产局, 1986.

    LIANG Dunjie, GUO Riheng, PAN Qixiang, et al. 1: 50,000 Baoan Banner & Shekou Banner & Shenzhen Banner & Wangmuxu Banner. Report of regional geological survey, Guangdong, Guangdong Provincial Bureau of Geology and Mineral Resources, 1986.
    [14]
    李清明, 徐腾飞, 李勇国, 梅年峰, 黄勐. 深圳地铁8号线岩溶发育特征及施工处理措施[J]. 桂林理工大学学报, 2017, 37(3): 405-411. doi: 10.3969/j.issn.1674-9057.2017.03.002

    LI Qingming, XU Tengfei, LI Yongguo, MEI Nianfeng, HUANG Meng. Karst characteristics and construction measures in Shenzhen Metro Line 8[J]. Journal of Guilin University of Technolog, 2017, 37(3): 405-411. doi: 10.3969/j.issn.1674-9057.2017.03.002
    [15]
    王贤能. 深圳市盐田区盐田谷地岩溶发育特征分析[J]. 地质灾害与环境保护, 2021, 32(4): 65-73.

    WANG Xianneng, Analysis of karst development characteristics in Yantian valley Yantian district, Shenzhen[J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(4): 65-73.
    [16]
    黄镇国, 李平日, 张仲英, 李孔宏, 乔彭年, 宗永强. 深圳地貌[M]. 广州: 广东科技出版社, 1983: 81-87.

    HUANG Zhenguo, LI Pingri, ZHANG Zhongying, LI Konghong, QIAO Pengnian, ZONG Yongqiang. Shenzhen Landform[M]. Guangzhou: Guangdong Science and Technology Publishing House, 1983: 81-87.
    [17]
    深圳地质编写组. 深圳地质[M]. 北京: 地质出版社, 2009: 122-124.

    Compiling group of Shenzhen Geology. Shenzhen Geology [M]. Beijing: Geological Publishing House, 2009: 122-124.
    [18]
    庄文明, 刘建雄, 李文辉, 许业熙, 陈绍前, 黄友义, 张宗胜. 1∶25万香港幅区域地质调查报告[R]. 广东: 广东省地质调查院, 2003.

    ZHUANG Wenming, LIU Jianxiong, LI Wenhui, XU Yexi, CHEN Shaoqian, HUANG Youyi, ZHANG Zongsheng. 1∶250,000 Hong Kong Banner. Report of regional geological survey[R]. Guangdong: Guangdong Geological Survey Institute, 2003.
    [19]
    康镇江, 管福贞, 王贤能, 等. 深圳市地质图说明书[R]. 广东: 深圳市地质学会, 2014.

    KANG Zhenjiang, GUAN Fuzhen, WANG Xianneng, et al. Geological Map Manual of Shenzhen City[R]. Guangdong: Shenzhen Geological Society, 2014.
    [20]
    徐夕生, 邱检生. 火成岩岩石学 [M]. 北京: 科学出版社, 2010: 64-274.

    XU Xisheng, QIU Jiansheng. Igneous Rcok Petrology [M]. Beijing: Beijing: Science Press, 2020: 64-274.
    [21]
    罗小杰, 张三定, 陈聪. 武汉城市岩溶研究[M]. 武汉: 中国地质大学出版社, 2019: 12-14.

    LUO Xiaojie, ZHANG Sanding, CHEN Chong. Wuhan Urban Karst Research [M]. Wuhan: China University of Geosciences Press, 2019: 12-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return