• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
MA Xiao, ZHOU Zhihua, ZHENG Zhiwen, LI Xiujuan, JIANG Xiaozhen, WEI Pingxin, LIAO Zhongzhen, PAN Zongyuan. Experimental study on water-gas pressure balance technology for the prevention and control of karst collapses[J]. CARSOLOGICA SINICA, 2025, 44(5): 1109-1120. doi: 10.11932/karst20250513
Citation: MA Xiao, ZHOU Zhihua, ZHENG Zhiwen, LI Xiujuan, JIANG Xiaozhen, WEI Pingxin, LIAO Zhongzhen, PAN Zongyuan. Experimental study on water-gas pressure balance technology for the prevention and control of karst collapses[J]. CARSOLOGICA SINICA, 2025, 44(5): 1109-1120. doi: 10.11932/karst20250513

Experimental study on water-gas pressure balance technology for the prevention and control of karst collapses

doi: 10.11932/karst20250513
  • Received Date: 2024-01-14
  • Accepted Date: 2025-10-16
  • Rev Recd Date: 2025-09-09
  • Available Online: 2026-01-13
  • With the expansion and increasing scale of underground engineering projects in China, geological hazards in karst areas, particularly the frequent occurrence of karst collapses, have become a major concern. To effectively prevent and control karst collapses, scholars have conducted in-depth research on the treatment methods over many years, yielding significant results. However, research on the method of balancing the water-gas pressure within karst pipeline systems remains insufficient, lacking both theoretical support and practical application to actual karst areas.To further explore this theoretical model, this study focuses on water-gas pressure balance technology for the prevention and control of karst collapses. A generalized geological model was developed, and two different specifications of indoor physical test models were designed and established. High-precision, high-frequency fiber optic pressure sensors were utilized to monitor pressure variations inside simulated karst cavities under varying conditions of vent diameter, initial water level, and flow velocity. This study specifically examined pressure fluctuations within the simulated cavities during changes in water level and the pressure pulsations occurring during water level drawdown. The aim was to identify a vent diameter capable of eliminating these pressure pulsations and balancing the internal pressure of the cavity, thereby establishing a general method for determining the vent diameter. The results of experiments show that the vent diameter required to balance water-gas pressure within the cavity can be categorized into three levels: the primary balance vent diameter that can eliminate pressure pulsations caused by water level drop; the effective balance vent diameter that can significantly reduce negative pressure within the cavity; and the optimal balance vent diameter that can effectively balance the water-gas pressure within the cavity. By analyzing the relationship between the vent diameter at each level and the cavity section diameter, the correlation between these diameters was determined, and the ratio of the vent diameter at each level to the cavity section diameter was established. It was found that the ratio of the balance vent diameter to the diameter of cavity section for eliminating water and gas pressure pulsations should exceed 0.5%. If the water vapor pressure within the cavity is to significantly reduce, this ratio should exceed 1.25%. Besides, this ratio should exceed 4.16% to fully balance the water-gas pressure inside the cavity.Finally, the determination of the vent diameter for pressure regulation, layout methods, depth design, and drilling process requirements should be considered when the application of water-gas pressure balance technology in practical prevention and control of karst collapses are discussed. This aims to refine the water-gas pressure balance technology for karst collapses and provide a theoretical basis for prevention and control measures.

     

  • loading
  • [1]
    康彦仁, 项式均, 陈健. 中国南方岩溶塌陷[M]. 南宁: 广西科学技术出版社, 1990.

    KANG Yanren, XIANG Shijun, CHEN Jian. Karst collapse in southern China [M]. Nanning: Guangxi Science and Technology Press, 1990.
    [2]
    康彦仁. 岩溶地面塌陷的形成条件[J]. 中国岩溶, 1988, 7(1): 9-18.

    KANG Yanren. Forming condition of land collapse in karst regions[J]. Carsologica Sinica, 1988, 7(1): 9-18.
    [3]
    雷明堂, 李瑜, 蒋小珍, 甘伏平, 蒙彦. 岩溶塌陷灾害监测预报技术与方法初步研究: 以桂林市柘木村岩溶塌陷监测为例[J]. 中国地质灾害与防治学报, 2004(S1): 148-152.

    LEI Mingtang, LI Yu, JIANG Xiaozhen, GAN Fuping, MENG Yan. Preliminary study on the technology and method of sinkhole collapse monitoring and prediction:As an example of sinkhole collapse monitoring station in Zhemu village ,Guilin City[J].The Chinese Journal of Geological Hazard and Control, 2004(S1): 148-152.
    [4]
    蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3): 411-417.

    MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3): 411-417.
    [5]
    潘宗源, 陈学军, 杨鑫, 宋宇, 张铭致. 湖南郴州地区岩溶塌陷分布规律及其影响因素浅析[J]. 中国岩溶, 2021, 40(2): 221-229.

    PAN Zongyuan, CHEN Xuejun, YANG Xin, SONG Yu, ZHANG Mingzhi. Distribution and influence factors of sinkholes in the Chenzhou area, Hunan Province[J]. Carsologica Sinica, 2021, 40(2): 221-229.
    [6]
    雷明堂, 蒋小珍. 我国岩溶塌陷的现状与对策[C]. //中国地质学会岩溶环境问题与对策学术研讨会论文集. 2013: 17.
    [7]
    雷明堂. 揭开岩溶塌陷地质灾害的面纱[J]. 国土资源科普与文化, 2015(4): 16-19.
    [8]
    代群力. 论岩溶地面塌陷的形式机制与防治[J]. 中国煤田地质, 1994, 6(2): 59-63.
    [9]
    卢耀如. 岩溶地区合理开发资源与防治地质灾害[J]. 水文地质工程地质, 2001(5): 1-6.
    [10]
    潘懋, 李铁峰. 灾害地质学[M]. 北京: 北京大学出版社, 2002.

    PAN MAO, LI Tiefeng. Disaster geology [M]. Beijing: Peking University Press, 2002.
    [11]
    Henry, J F. The application of compaction grouting to karstic limestone problems. In: Beck, B. F. and Wilson, W. L. (eds), Karst Hydrogeology: Engineering and EnvironmentalApplications. 1987: 447-450.
    [12]
    Kannan R C. Designing foundations around sinkholes[J]. Engineering Geology, 1999, 52: 75-82.
    [13]
    徐卫国, 赵桂荣. 试论岩溶矿区地面塌陷的真空吸蚀作用[J]. 地质论评, 1981, 27(2): 174-180, 183.

    XU Weiguo, ZHAO Guirong. The implication of suction action for ground subsidence in karst mining areas[J]. Geological Review, 1981, 27(2): 174-180, 183.
    [14]
    左平怡, 赵济群, 钱再华. 对真空吸蚀作用解释地面塌陷的疑议[J]. 地质论评, 1981, 27(3): 243-248 .

    ZUO Pingyi, ZHAO Jiqun, QIAN Zaihua. Doubts about the explanation of ground subsidence from the concept of suction action[J]. Geological Review, 1981, 27 (3) : 243-248.
    [15]
    蒋小珍, 雷明堂, 管振德. 湖南宁乡大成桥充水矿山疏干区岩溶系统水气压力监测及突变特征[J]. 中国岩溶, 2016, 35(2): 179-189.

    JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Character of water or barometric pressure jump within karst conduit in large strong drainage area of karst water filling mine in Dachengqiao, Ningxiang, Hunan[J]. Carsologica Sinica, 2016, 35(2): 179-189.
    [16]
    马骁, 蒋小珍, 雷明堂, 李亚军, 贾龙. 桩基施工诱发岩溶塌陷的机理模式及防控措施[J]. 地下空间与工程学报, 2023, 19(2): 691-700.

    MA Xiao, JIANG Xiaozhen, LEI Mingtang, LI Yajun, JIA Long. Mechanism mode and prevention and control measures of karst collapse induced by pile foundation construction[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2): 691-700.
    [17]
    戴建玲, 罗伟权, 吴远斌, 蒋小珍. 广西来宾市良江镇吉利村岩溶塌陷成因机制分析[J]. 中国岩溶, 2017, 36(6): 808-818.

    DAI Jianling, LUO Weiquan, WU Yuanbin, JIANG Xiaozhen. Mechanism analysis of sinkholes formation at Jili village, Laibin City, Guangxi, China[J]. Carsologica Sinica, 2017, 36(6): 808-818.
    [18]
    蒋小珍, 雷明堂, 管振德. 岩溶塌陷灾害的水动力条件危险性评价指标: 以广西贵港青云村为例[J]. 地下空间与工程学报, 2012, 8(6): 1316-1321.

    JIANG Xiaozhen, LEI Mingtang, GUAN Zhende. Characterization criteria of karst collapse hazard on groundwater fluctuations in Qingyun village, Guigang, Guangxi, China[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(6): 1316-1321.
    [19]
    蒋小珍, 冯涛, 郑志文, 雷明堂, 张伟, 马骁, 伊小娟. 岩溶塌陷机理研究进展[J]. 中国岩溶, 2023, 42(3): 517-527.

    JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. Carsologica Sinica, 2023, 42(3): 517-527.
    [20]
    刘昭京, 蒋小珍, 冯涛, 黄胜平, 周富彪, 伊小娟. 湘桂铁路二塘车站路基岩溶塌陷成因与防治对策[J]. 中国岩溶, 2023, 42(1): 109-118.

    LIU Zhaojing, JIANG Xiaozhen, FENG Tao, HUANG Shengping, ZHOU Fubiao, YI Xiaojuan. Formation mechanism and prevention countermeasures for karst collapse in Ertang railway station, Guilin[J]. Carsologica Sinica, 2023, 42(1): 109-118.
    [21]
    李瑜, 雷明堂, 蒋小珍. 广西黎塘岩溶塌陷监测[J]. 中国岩溶, 2006, 25(4): 341-346.

    LI Yu, LEI Mingtang, JIANG Xiaozhen. Karst collapse monitoring in Litang, Guangxi[J]. Carsologica Sinica, 2006, 25(4): 341-346.
    [22]
    吴远斌, 殷仁朝, 雷明堂, 戴建玲, 贾龙, 潘宗源, 马骁, 周富彪. 重庆中梁山地区隧道工程影响下岩溶塌陷形成演化模式及防治对策[J]. 中国岩溶, 2021, 40(2): 246-252.

    WU Yuanbin, YIN Renchao, LEI Mingtang, DAI Jianling, JIA Long, PAN Zongyuan, MA Xiao, ZHOU Fubiao. Triggering factors and prevention-control countermeasures of karst collapses caused by tunnel construction in the Zhongliangshan area, Chongqing[J]. Carsologica Sinica, 2021, 40(2): 246-252.
    [23]
    潘宗源, 吴远斌, 贾龙, 殷仁朝, 马骁, 陈婷. 湖南宁乡大成桥岩溶地下水对暴雨响应特征及多元回归预测模型[J]. 中国岩溶, 2020, 39(2): 232-242.

    PAN Zongyuan, WU Yuanbin, JIA Long, YIN Renchao, MA Xiao, CHEN Ting. Response characteristics of karst groundwater to rainstorm and the multiple regression prediction model in Dachengqiao, Ningxiang county, Hunan Province[J]. Carsologica Sinica, 2020, 39(2): 232-242.
    [24]
    蒙彦, 黄健民, 贾龙. 基于地下水动力特征监测的岩溶塌陷预警阈值探索: 以广州金沙洲岩溶塌陷为例[J]. 中国岩溶, 2018, 37(3): 408-414.

    MENG Yan, HUANG Jianmin, JIA Long. Early warning threshold of sinkhole collapse based on dynamic characteristics from groundwater monitoring: A case study of Jinshazhou of Guangzhou, China[J]. Carsologica Sinica, 2018, 37(3): 408-414.
    [25]
    冯亚伟, 毛宁利, 李卫利. 山东荆泉地区岩溶地面塌陷预警分区研究[J]. 中国岩溶, 2024, 43(2): 421-431.

    FENG Yawei, MAO Ningli, LI Weili. Zoning of early warning for karst collapses in the Jingquan area of Shandong Province[J]. Carsologica Sinica, 2024, 43(2): 421-431.
    [26]
    冯亚伟, 李志峰, 仝路, 曾斌. 山东荆泉断块区覆盖型岩溶塌陷控制因素和影响因素分析[J]. 中国地质灾害与防治学报, 2020, 31(3): 73-82.

    FENG Yawei, LI Zhifeng, TONG Lu, ZENG Bin. Analysis on factors controlling and influencing overburden karst collapse in Jingquan fault block, Shandong Province[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 73-82.
    [27]
    吴晟堂, 蒋小珍, 马骁, 汤振. 岩溶地下工程地质环境影响区范围划定初步研究: 以深圳市龙岗区基坑降水为例[J]. 中国岩溶, 2022, 41(5): 825-837.

    WU Shengtang, JIANG Xiaozhen, MA Xiao, TANG Zhen. Study on the delimitation of affected zone of geological environment for karst underground engineering: Taking Longgang district, Shenzhen City as an example[J] Carsologica Sinica, 2022, 41(5): 825-837.
    [28]
    戴建玲, 雷明堂, 蒋小珍, 罗伟权. 极端气候与岩溶塌陷[J]. 中国矿业, 2020, 29(S2): 402-404.

    DAI Jianling, LEI Mingtang, JIANG Xiaozhen, LUO Weiquan. Extreme climate and sinkhole[J]. China Mining Magazine, 2020, 29(S2): 402-404.
    [29]
    蒋小珍. 岩溶塌陷发育条件的试验研究[J]. 中国地质灾害与防治学报, 1998, 9(S1): 187-191.

    Jiang Xiaozhen. The experimental study of karst collapse condition[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(S1): 187-191.
    [30]
    蒋小珍. 岩溶塌陷中水压力的触发作用[J]. 中国地质灾害与防治学报, 1998, 9(3): 42-47.

    JIANG Xiaozhen. Inducement of karst collapse from groundwater pressure[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(3): 42-47.
    [31]
    马骁, 蒋小珍, 曹细冲, 潘宗源. 岩溶空腔水气压力脉动效应的发现及意义[J]. 中国岩溶, 2019, 38(3): 404-410.

    MA Xiao, JIANG Xiaozhen, CAO Xichong, PAN Zongyuan. Discovery and significance of water-gas pressure pulsation effect within karst cavity[J]. Carsologica Sinica, 2019, 38(3): 404-410.
    [32]
    郑源, 汪宝罗, 屈波. 混流式水轮机尾水管压力脉动研究综述[J]. 水力发电, 2007, 33(2): 66-69.

    ZHENG Yuan, WANG Baoluo, QU Bo. Study on the pressure pulse in the draft tube of francis turbine[J]. Water Power, 2007, 33(2): 66-69.
    [33]
    吴玉林, 吴晓晶, 刘树红. 水轮机内部涡流与尾水管压力脉动相关性分析[J]. 水力发电学报, 2007, 26(5): 122-127.

    WU Yulin, WU Xiaojing, LIU Shuhong. Correlation analysis of the internal vortex flow of hydro turbine with the pressure fluctuation inside draft tube[J]. Journal of Hydroelectric Engineering, 2007, 26(5): 122-127.
    [34]
    杨建东, 胡金弘, 曾威, 杨桀彬. 原型混流式水泵水轮机过渡过程中的压力脉动[J]. 水利学报, 2016, 47(7): 858-864.

    YANG Jiandong, HU Jinhong, ZENG Wei, YANG Jiebin. Transient pressure pulsations of prototype Francis pump-turbines[J]. Journal of Hydraulic Engineering, 2016, 47(7): 858-864.
    [35]
    钱忠东, 陆杰, 郭志伟, 张建军. 水泵水轮机在水轮机工况下压力脉动特性[J]. 排灌机械工程学报, 2016, 34(8): 672-678.

    QIAN Zhongdong, LU Jie, GUO Zhiwei, ZHANG Jianjun. Characteristics of pressure fluctuation in pump-turbine under turbine mode[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(8): 672-678.
    [36]
    杨孙圣, 孔繁余, 张新鹏, 黄志攀, 成军. 液力透平非定常压力脉动的数值计算与分析[J]. 农业工程学报, 2012, 28(7): 67-72.

    YANG Sunsheng, KONG Fanyu, ZHANG Xinpeng, HUANG Zhipan, CHENG Jun. Simulation and analysis of unsteady pressure fluctuation in hydraulic turbine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7): 67-72.
    [37]
    李琪飞, 刘超, 王源凯, 权辉. 异常低水头下水泵水轮机压力脉动特性分析[J]. 兰州理工大学学报, 2017, 43(2): 59-64.

    LI Qifei, LIU Chao, WANG Yuankai, QUAN Hui. Analysis of pressure fluctuation characteristics of pump-turbine under abnormally low head[J]. Journal of Lanzhou University of Technology, 2017, 43(2): 59-64.
    [38]
    洪振国, 刘浩林. 阻抗式调压井水力学计算研究[J]. 水力发电, 2014, 40(12): 51-54.

    HONG Zhenguo, LIU Haolin. Research on hydraulic calculation of throttled surge shaft[J]. Water Power, 2014, 40(12): 51-54.
    [39]
    庹世华. 九条岭水电站调压室设计[J]. 水利规划与设计, 2013(7): 49-52, 63.
    [40]
    胡志英. 华安水电站扩建工程调压井稳定断面优化研究[J]. 水利科技, 2014(2): 36-37, 53.
    [41]
    鲁毅. 双河水电站调压室设计[J]. 四川水力发电, 2015, 34(4): 93-95, 97.
    [42]
    洪振国. 水电站调压井形式比选研究[J]. 中国农村水利水电, 2013(4): 113-115, 117.

    HONG Zhenguo. Research on comparison and selection of hydropower station shaft types[J]. China Rural Water and Hydropower, 2013(4): 113-115, 117.
    [43]
    蒋小珍, 雷明堂. 岩溶塌陷灾害的岩溶地下水气压力监测技术及应用[J]. 中国岩溶, 2018, 37(5): 786-791.

    JIANG Xiaozhen, LEI Mingtang. Monitoring technology and its application of karst ground water-air pressure in karst collapse[J]. Carsologica Sinica, 2018, 37(5): 786-791.
    [44]
    Lei M, Gao Y, Jiang X, Guan Z. Mechanism analysis of sinkhole formation at Maohe village, Liuzhou City, Guangxi, China[J]. Environmental Earth Sciences, 2016, 542: 1-12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (106) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return