• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
JIANG Ruiyang, DAI Qunwei, ZHANG Ting, DENG Zhiqing, WANG Lihui, SHAN Jing, RAN Yue, GAO Jun, CAI Jiangrong, WANG Guoyue. Cause analysis of travertine blackening:A case study of travertine at Huanglong Ravine, Sichuan Province, China[J]. CARSOLOGICA SINICA, 2025, 44(5): 1101-1108, 1120. doi: 10.11932/karst20250512
Citation: JIANG Ruiyang, DAI Qunwei, ZHANG Ting, DENG Zhiqing, WANG Lihui, SHAN Jing, RAN Yue, GAO Jun, CAI Jiangrong, WANG Guoyue. Cause analysis of travertine blackening:A case study of travertine at Huanglong Ravine, Sichuan Province, China[J]. CARSOLOGICA SINICA, 2025, 44(5): 1101-1108, 1120. doi: 10.11932/karst20250512

Cause analysis of travertine blackening:A case study of travertine at Huanglong Ravine, Sichuan Province, China

doi: 10.11932/karst20250512
  • Received Date: 2024-09-12
  • Accepted Date: 2025-05-09
  • Rev Recd Date: 2025-04-19
  • Available Online: 2026-01-13
  • Travertine is one of the most precious resources provided to human beings by nature, and its formation mechanism is highly complex. The formation process involves intricate interactions among multiple factors, including geomorphological features, hydrochemical conditions, hydrodynamic forces, climate variations, environmental changes, and biological activities, all of which collectively preserve critical environmental records. As one of the five world travertine heritage sites, Sichuan Huanglong is famous for its colorful and large-scale travertine landscapes. These unique geological features hold exceptional value for scientific research, tourism, and ecological aesthetics. Every year, Huanglong attracts a large number of tourists from home and abroad, which promotes the rapid development of the local economy. However, in recent years, some of the travertine bodies in the core scenic area of Huanglong have shown obvious blackening phenomena, which not only significantly diminish the aesthetic value of the travertine landscape, but may also indicate the potential changes in the regional ecological environment. At the same time, the blackening of travertine bodies will reduce the quality of the tourists' experience, which will have a certain negative impact on the development of the local tourism industry. As a unique environmental and geological formation developed over tens of thousands of years, travertine landscapes are fragile and non-renewable. Therefore, protecting travertine resources is an urgent matter, and it is important for all of us to work together to preserve them.In order to clarify the causes of travertine blackening, this study focuses on both blackened and unblackened travertine samples from Huanglong, Sichuan Province, China. Representative samples were collected through on-site surveys and analyzed with laboratory testing. A comparative analysis was then conducted between the two types of travertine samples. X-ray diffraction analysis revealed that both the blackened and unblackened travertine corresponded to the PDF#86-2334 standard card, indicating they are calcite-type travertine. X-ray fluorescence spectroscopy results showed that the main chemical composition of both blackened and unblackened travertine were CaO, suggesting no significant changes in the mineral phase composition and chemical components occurred during the blackening process. Further elemental analyses showed that the contents of Total Carbon (TC) and Total Organic Carbon (TOC) of the blackened travertine were significantly higher than those of the unblackened travertine, suggesting that organic matter may play an important role in the blackening process. Meanwhile, Scanning Electron Microscope (SEM) revealed that the biological traces on the surface of the blackened travertine were more pronounced compared to those on the unblackened travertine. Notably, the experiment also detected the presence of substances insoluble in hydrochloric acid on the surface of the blackened travertine. Thermogravimetric analysis of the substance showed that the main mass loss occurred between 200°C and 500°C, a range that closely corresponds to the thermal decomposition of organic matter. Therefore, it is inferred that the substance is an acid-insoluble organic matter. These results show that the mineral phase and chemical composition of the blackened travertine remain largely unchanged compared to those of the unblackened travertine, suggesting that the biological effect is the main cause of the travertine blackening.This study provides direct evidence of the biological factors contributing to travertine blackening, offering a new scientific perspective for a deeper understanding of the degradation mechanism of travertine landscapes. It also supplies essential data to support the conservation and management of the Huanglong World Heritage Site. These findings hold great theoretical and practical implications for the conservation and sustainable development of the World Natural Heritage site.

     

  • loading
  • [1]
    蒋忠诚, 代群威, 董发勤, 张强, 党政, 汪智军, 刘凡. 国内外钙华岩溶景观的研究进展与展望[J]. 中国岩溶, 2021, 40(1): 4-10.

    JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. Carsologica Sinica, 2021, 40(1): 4-10.
    [2]
    Zhang H, Liu X. A study on the problems and conservation of Leizhou stone dogs, Guangdong, China[J]. Studies in Conservation, 2014, 59(sup1): S195-S198. doi: 10.1179/204705814X13975704319352
    [3]
    Cappitelli F, Cattò C, Villa F. The Control of Cultural Heritage Microbial Deterioration[J]. Microorganisms, 2020, 8(10): 1542. doi: 10.3390/microorganisms8101542
    [4]
    Fuentes E, Pérez-Velón D, Prieto B. Effects of changes in UV-B radiation levels on biofilm-forming organisms commonly found in cultural heritage surfaces[J]. Environmental Research, 2022, 214: 114061. doi: 10.1016/j.envres.2022.114061
    [5]
    张金流, 王海静, 董立, 赵德猛. 世界遗产: 四川黄龙钙华景观退化现象、原因及保护对策分析[J]. 地球学报, 2012, 33(1): 111-120.

    ZHANG Jinliu, WANG Haijing, DONG Li, ZHAO Demeng. An Analysis of Travertine Landscape Degradation in Huanglong Ravine of Sichuan, A World's Heritage Site, and Its Causes and Protection Countermesures[J]. Acta Geoscientica Sinica, 2012, 33(1): 111-120.
    [6]
    严飞, 董发勤, 代群威, 李琼芳, 王富东, 曾嘉, 曹芹, 杨刚. 气候变化背景下钙华退化影响因素及其保育措施研究进展[J]. 中国岩溶, 2021, 40(1): 166-170.

    YAN Fei, DONG Faqin, DAI Qunwei, LI Qiongfang, WANG Fudong, ZE Jia, CAO Qin, YANG Gang. Influencing factors of the degradation of travertine and its conservation measures under the background of climate change[J]. Carsologica Sinica, 2021, 40(1): 166-170.
    [7]
    董发勤, 代群威, 赵玉连, 陈木兰, 饶瀚云, 吕珍珍, 宗美荣, 李博文, Emin Ciftci, Mehmet Furkan Sene . 土耳其棉花堡与中国黄龙和白水台钙华退化原因对比研究[J]. 中国岩溶, 2021, 40(6): 1069-1076.

    DONG Faqin, DAI Qunwei, ZHAO Yulian, CHEN Mulan, RAO Hanyun, LVU Zhenzhen, ZONG Meirong, LI Bowen, Ciftci Emin, Sener Mehmet Furkan. Comparative study on the causes of travertine degradation between Pamukkale in Turkey and Huanglong, Baishuitai in China[J]. Carsologica Sinica, 2021, 40(6): 1069-1076.
    [8]
    乔雪, 肖瑶, 杜杰, 唐亚, 肖维阳, 郑歆蕾, 张梦. 九寨沟世界自然遗产核心景区钙华景观的研究进展与展望[J]. 地球与环境, 2022, 50(2): 202-218.

    QIAO Xue, XIAO Yao, DU Jie, TANG Ya, XIAO Weiyang, ZHENG Xinlei, ZHANG Meng. Tufa Landscapes in the Key Scenic Areas of the Jiuzhaigou Natural World Heritage Site: A Critical Review and Future Research Needs[J]. Earth And Environment, 2022, 50(2): 202-218.
    [9]
    邓贵平, 颜磊, 章小平. 九寨沟自然保护区景观变化与保护[J]. 山地学报, 2011, 29(2): 173-182.

    DENG Guiping, YAN Lei, ZHANG Xiaoping. The Changes of Landscape and the Adaptive M anagem ent Strategies at Jiuzhaigou Nature Reserve in Sichuan China[J]. Journal of mountain science, 2011, 29(2): 173-182.
    [10]
    CHEN Xiaoqing, CHEN Jiangang, CUI Peng, YOU Yong, HU Kaiheng, YANG Zongji, ZHANG Weifeng, LI Xinpo,WU Yong. Assessment of prospective hazards resulting from the 2017 earthquake at the world heritage site Jiuzhaigou Valley, Sichuan, China[J]. Journal of Mountain Science, 2018, 15(4): 779-792. doi: 10.1007/s11629-017-4785-1
    [11]
    党政. 九寨沟核心遗产点震后应急监测及修复可行性研究[D]. 绵阳: 西南科技大学, 2019.

    DANG Zheng. Study on emergency monitoring and restoration ofJiuzhaigou Core Heritage sites after earthquake[D]. Mianyang: Southwest University of Science and Technology, 2019.
    [12]
    胥良, 姜泽凡, 李前银. 黄龙钙华景观演化特征及保护措施探讨[J]. 地质灾害与环境保护, 2007(4): 79-84.

    XU Liang, JIANG Zefan, LI Qianyin. Study On Characters Of Evolution And Protection Measures Of Huanglong Calc-sinter Landscape[J]. Journal of Geological Hazards and Environment Preservation, 2007(4): 79-84.
    [13]
    张红敏, 赵学钦, 王富东, 吴昌达, 李松. 四川九寨沟诺日朗瀑布钙华大坝放射性及沉积环境意义[J]. 中国岩溶, 2021, 40(1): 157-165.

    ZHANG Hongmin, ZHAO Xueqin, WANG Fudong, WU Changda, LI Song. Radioactivity of Nuorilang waterfall travertine dam in Jiuzhaigou valley, Sichuan Province and its implication for the sedimentary environment[J]. Carsologica Sinica, 2021, 40(1): 157-165.
    [14]
    覃建勋, 韩鹏, 车晓超, 袁国礼, 方斌, 王根厚. 利用荣玛地区温泉钙华δ18O及微量元素重建西藏全新世以来古气候[J]. 地学前缘, 2014, 21(2): 312-322.

    QIN Jianxun, HAN Peng, CHE Xiaochao, YUAN Guoli, FANG Bin, WANG Genhou. Resuming the Holocene paleoclimate using δ18O and trace elements of travertine in Rongma area, Tibet[J]. Earth Science Frontiers, 2014, 21(2): 312-322.
    [15]
    郭建强, 彭东, 杨俊义. 松潘黄龙水循环及钙华景观成因研究[J]. 四川地质学报, 2002(1): 21-26.

    GUO Jianqiang, PENG Dong, YANG Junyi. A study of water circulation and cenesis of travertine landscape in huanglog[J]. Journal of Sichuan Geology, 2002(1): 21-26.
    [16]
    Sanchez-Moral S, Portillo M C, Janices I, Cuezva S, Gonzalez J M. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave[J]. Geomorphology, 2012, 139-140: 285-292.
    [17]
    Wang H, Liu Z. Hydrochemical Variations of the Huanglong Spring-Fed Travertine-Depositing Stream in the Huanglong Ravine, Sichuan, SW China, a World Natural Heritage Site[M]//ANDREO B, CARRASCO F, DURÁN J J, et al. Advances in Research in Karst Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 381-386.
    [18]
    张金流, 刘再华. 世界遗产: 四川黄龙钙华景观研究进展与展望[J]. 地球与环境, 2010, 38(1): 79-84.

    ZHANG Jinliu, LIU Zaihua. Progress and Future Prospect in Research on the Travertine Landscape at Huanglong Sichuan: A World's Heritage Site[J]. Earth and the environment, 2010, 38(1): 79-84.
    [19]
    陈书君. 人间瑶池: 黄龙[J]. 地理教学, 2014(4): 2, 65.

    CHEN Shujun. Yao Chi in the world: Huanglong[J]. Teaching Geography, 2014(4): 2, 65.
    [20]
    刘馨泽, 张清明, 唐淑, 田长宝, 高文皓, 周亚萍, 陈洪伟, 韩梅东, 孙东. 黄龙五彩池源水区渗漏特征分析和人工降渗保育综合研究[J]. 中国岩溶, 2024, 43(1): 33-47. doi: 10.11932/karst20240104

    LIU Xinze, ZHANG Qingming, TANG Shu, TIAN Changbao, ZHOU Yaping, CHEN Hongwei, HAN Dongmei, SUN Dong. Comprehensive study on characteristics of leakage in the source water area and landscape conservation by artificial leakage reduction of Huanglong Wucai pool[J]. Carsologica Sinica, 2024, 43(1): 33-47. doi: 10.11932/karst20240104
    [21]
    周子健. 四川黄龙钙华的退化因素及彩池面积变化分析[D]. 绵阳: 西南科技大学, 2024.

    ZHOU Zijian. Analysis of degradation factors and colourful pool area change of Huanglong travertine in Sichuan Province[D]. Mianyang: Southwest University of Science and Technology, 2024.
    [22]
    Patel S, Kundu S, Halder P, Rickards L, Paz-Ferreiro J, Surapaneni A, Madapusi S, Shah K. Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides[J]. Renewable Energy, 2019, 141: 707-716. doi: 10.1016/j.renene.2019.04.047
    [23]
    Alvarez J, Amutio M, Lopez G, Barbarias I, Bilbao J, Olazar M. Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor[J]. Chemical Engineering Journal, 2015, 273: 173-183. doi: 10.1016/j.cej.2015.03.047
    [24]
    宋韬, 代群威, 李琼芳, 董发勤, 崔杰, 安德军, 罗尧东, Bruce W.Fouke. 黄龙争艳彩池边石坝藻席钙华特性研究及意义[J]. 中国岩溶, 2021, 40(1): 105-111. doi: 10.11932/karst20210111

    SONG Tao, DAI Qunwei, LI Qiongfang, DONG Faqin, CHUI Jie, AN Dejun, LUO Raodong, Bruce W.Fouke. Study on characteristics and significances of algal mats travertine in Zhengyancai pool marble dam of Huanglong natural reserve[J]. Carsologica Sinica, 2021, 40(1): 105-111. doi: 10.11932/karst20210111
    [25]
    Zhang C, Li M, Sun J, Huang J. The mechanism of C−N−S interconnection degradation in organic-rich sediments by Ca(NO3)2 − CaO2 synergistic remediation[J]. Environmental Research, 2022, 214: 113992. doi: 10.1016/j.envres.2022.113992
    [26]
    万国江, 白占国, 王浩然, 黄荣贵,白占国. 洱海近代沉积物中碳-氮-硫-磷的地球化学记录[J]. 地球化学, 2000(2): 189-197. doi: 10.3321/j.issn:0379-1726.2000.02.012

    WAN Guojiang, BAI Zhanguo, WANG Haoran, HUANG Ronggui, BAI Zhanguo. The geochemical records of C-N-S-P in recent sediments of Lake Erhai, China[J]. Geochimica, 2000(2): 189-197. doi: 10.3321/j.issn:0379-1726.2000.02.012
    [27]
    汪智军, 殷建军, 郝秀东, 王培, 张强, 蓝高勇, 张清明. 基于微岩相分析的藻类在钙华沉积中的作用研究:以四川黄龙为例[J]. 中国岩溶, 2021, 40(1): 44-54. doi: 10.11932/karst20210105

    WANG Zhijun, YIN Jianjun, HAO Xiudong, WANG Pei, ZHANG Qiang,LAN Gaoyong, ZHANG Qingming. Role of algae in travertine deposition revealed by microscale observations: A case study of Huanglong, Sichuan, China[J]. Carsologica Sinica, 2021, 40(1): 44-54. doi: 10.11932/karst20210105
    [28]
    汪智军, 殷建军, 蒲俊兵, 袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617. doi: 10.11867/j.issn.1001-8166.2019.06.0606

    WANG Zhijun, YIN Jianjun, PU Junbing, YUAN Daoxian. Biological Processes Responsible for Travertine Deposition: A Review and Future Prospect[J]. Advances in earth science, 2019, 34(6): 606-617. doi: 10.11867/j.issn.1001-8166.2019.06.0606
    [29]
    李永新, 田友萍, 李银. 四川黄龙钙华藻类及其生物岩溶作用[J]. 中国岩溶, 2011, 30(1): 86-92. doi: 10.3969/j.issn.1001-4810.2011.01.014

    LI Yongxin, TIAN Youping, LI Yin. Tufa algae and biological karstification at Huanglong Sichuan[J]. Carsologica Sinica, 2011, 30(1): 86-92. doi: 10.3969/j.issn.1001-4810.2011.01.014
    [30]
    Cappitelli F, Salvadori O, Albanese D, Villa F, Sorlini C, . Cyanobacteria cause black staining of the National Museum of the American Indian Building, Washington, DC, USA[J]. Biofouling, 2012, 28(3): 257-266. doi: 10.1080/08927014.2012.671304
    [31]
    C. Gaylarde C. Influence of Environment on Microbial Colonization of Historic Stone Buildings with Emphasis on Cyanobacteria[J]. Heritage, 2020, 3(4): 1469-1482.
    [32]
    Santo A P, Cuzman O A, Petrocchi D, Pinna D, Salvtici T, Perto B. Black on White: Microbial Growth Darkens the External Marble of Florence Cathedral[J]. Applied Sciences, 2021, 11(13): 6163. doi: 10.3390/app11136163
    [33]
    Marvasi M, Donnarumma F, Frandi A, Mastromei G, Sterflinger K, Tiano P, Perito B. Black microcolonial fungi as deteriogens of two famous marble statues in Florence, Italy[J]. International Biodeterioration & Biodegradation, 2012, 68: 36-44.
    [34]
    Gorbushina A A, Krumbein W E, Hamman C H, Panina L, Soukharjevski S, Wollenzien U. Role of black fungi in color change and biodeterioration of antique marbles[J]. Geomicrobiology Journal, 1993, 11(3-4): 205-221. doi: 10.1080/01490459309377952
    [35]
    Demontis P, Gulín-González J, Masia M, Suffritti G B. The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment[J]. Journal of Physics: Condensed Matter, 2010, 22(28): 284106.

    Demontis P, Gulín-González J, Masia M, Suffritti G B. The behaviour of water confined in zeolites: molecular dynamics simulations versus experiment[J]. Journal of Physics: Condensed Matter, 2010, 22(28): 284106.
    [36]
    Fonts I, Azuara M, Gea G, Murillo M B. Study of the pyrolysis liquids obtained from different sewage sludge[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2): 184-191. doi: 10.1016/j.jaap.2008.11.003
    [37]
    Font R, Fullana A, Conesa J A, Llavador F. Analysis of the pyrolysis and combustion of different sewage sludges by TG[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58-59: 927-941.
    [38]
    Wang Y, Liu X. Sulfur-oxidizing bacteria involved in the blackening of basalt sculptures of the Leizhou Stone Dog[J]. International Biodeterioration & Biodegradation, 2021, 159: 105207.
    [39]
    Gaylarde C C, Rodríguez C H, Navarro-Noya Y E, Ortega-Morales B O. Microbial Biofilms on the Sandstone Monuments of the Angkor Wat Complex, Cambodia[J]. Current Microbiology, 2012, 64(2): 85-92. doi: 10.1007/s00284-011-0034-y
    [40]
    Crispim C A, Gaylarde C C. Cyanobacteria and Biodeterioration of Cultural Heritage: A Review[J]. Microbial Ecology, 2005, 49(1): 1-9. doi: 10.1007/s00248-003-1052-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (105) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return