| Citation: | ZHOU Jianwei, HE Xiao, GAO Xiaofeng, PENG Tao, XU Ke, ZHAO Yong. Study on an in-situ dissolution experiment of gypsum boreholes[J]. CARSOLOGICA SINICA, 2025, 44(5): 1025-1035, 1048. doi: 10.11932/karst20250508 |
| [1] |
Gutiérrez F, Ortí F, Gutiérrez M, Pérez-González A, Benito G, Prieto J G, Durán Valsero J J. The stratigraphical record and activity of evaporite dissolution subsidence in Spain[J]. Carbonates and Evaporites, 2001, 16(1): 46-70. doi: 10.1007/BF03176226
|
| [2] |
Cooper A H. Environmental problems caused by gypsum karst and salt karst in Great Britain[J]. Carbonates and Evaporites, 2002, 17(2): 116-120.
|
| [3] |
Farrant A R, Cooper A H. Karst geohazards in the UK: the use of digital data for hazard management[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2008, 41(3): 339-356. doi: 10.1144/1470-9236/07-201
|
| [4] |
Schwendel A C, Cooper A H. Meander chute cutoff at an alluvial river facilitated by gypsum sinkholes[J]. Geomorphology, 2021, 393(3): 107944.
|
| [5] |
Doğan U. Land subsidence and caprock dolines caused by subsurface gypsum dissolution and the effect of subsidence on the fluvial system in the Upper Tigris Basin (between Bismil-Batman, Turkey)[J]. Geomorphology, 2005, 71(3/4): 389-401.
|
| [6] |
Johnson K S. Subsidence hazards due to evaporite dissolution in the United States[J]. Environmental geology: International journal of geosciences, 2005, 48(3): 395-409. doi: 10.1007/s00254-005-1283-5
|
| [7] |
Johnson K S. Evaporite karst in the USA[J]. Environmental geology, 2008, 53: 937-943. doi: 10.1007/s00254-007-0716-8
|
| [8] |
卢耀如, 张凤娥, 阎葆瑞, 郭秀红. 硫酸盐岩岩溶发育机理与有关地质环境效应[J]. 地球学报, 2002, 23(1): 1-6. doi: 10.3321/j.issn:1006-3021.2002.01.001
LU Yaoru, ZHANG Fenge, YAN Baorui, GUO Xiuhong. Mechanism of karst development in sulphate rocks and its main Geo environmental Impacts[J]. Acta Geoscientica Sinica, 2002, 23(1): 1-6. doi: 10.3321/j.issn:1006-3021.2002.01.001
|
| [9] |
王光亚, 施斌, 徐玉琳, 顾阿明. 南京石膏矿特大突水灾害机理研究[J]. 工程地质学报, 2008, 16(5): 651-656.
Wang Guangya, Shi Bin, Xu Yulin, GU Aming. Case study and mechanism of water invasion hazard in Nanjing gypsum mine at deep depth[J]. Journal of Engineering Geology, 2008, 16(5): 651-656.
|
| [10] |
张玲玲. 石膏原岩静水溶蚀时间-温度效应试验初步研究[J]. 中国岩溶, 2019, 38(2): 265-268. doi: 10.11932/karst20190211
ZHANG Lingling. Preliminary experimental study on time-temperature effects of gypsum rock corrosion in static water[J]. Carsologica Sinica, 2019, 38(2): 265-268. doi: 10.11932/karst20190211
|
| [11] |
Pando L, Pulgar J A, Gutierrez-Claverol M. A case of man-induced ground subsidence and building settlement related to karstified gypsum (Oviedo, NW Spain)[J]. Environmental Earth Sciences, 2013, 68(2): 507-519. doi: 10.1007/s12665-012-1755-3
|
| [12] |
Laouafa F, Guo J, Quintard M. Modeling of salt and gypsum dissolution: applications, evaluation of geomechanical hazards[J]. European Journal of Environmental and Civil Engineering, 2019: 1-22.
|
| [13] |
孟涛, 梁卫国, 陈跃都, 于永军. 层状盐岩溶腔建造过程中石膏夹层周期性垮塌理论分析[J]. 岩石力学与工程学报, 2015, Z1: 3267-3273.
MENG Tao, LIANG Weiguo, CHEN Yuedu, YU Yongjun. Theoretical analysis of periodic fracture for gypsum interlayer during construction of bedded salt cavern[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, Z1: 3267-3273.
|
| [14] |
Zaier I, Billiotte J, De Windt L, Charmoille A . The impact of common impurities present in gypsum deposits on in situ dissolution kinetics[J]. Environ Earth Sci, 2023, 82, 31. DOI: https://doi.org/10.1007/s12665-022-10710-4.
|
| [15] |
Feng P, Brand A S, Chen L, Bullard J W. In situ nanoscale observations of gypsum dissolution by digital holographic microscopy[J]. Chemical geology, 2017, 46025-36. DOI: 10.1016/j.chemgeo.2017.04.008.
|
| [16] |
Meng T, Meng X, Zhang D H, Hu Y. Using micro-computed tomographyand scanning electron microscopy to assess the morphologicalevolution and fractal dimension of a salt-gypsum rock subjectedto a coupled thermal-hydrological-chemical environment[J]. Mar Petrol Geol, 2018, 98: 316-334. DOI: 10. 1016/j. marpe tgeo.2018. 8. 24.
|
| [17] |
周其健, 郭永春, 屈智辉, 郑立宁, 许福周, 任跃勤. 某红层地基差异沉降原因分析[J]. 建筑科学, 2020, 36(11): 101-106.
ZHOU Qijian, GUO Yongchun, QU Zhihui, ZHENG Lining, XU Fuzhou, REN Yueqin. Causes analysis of differential settlement of a red bed foundation[J]. Building Science, 2020, 36(11): 101-106.
|
| [18] |
韩浩东, 王春山, 王东辉, 李鹏岳, 李华, 杨涛. 成都市白垩系灌口组富膏盐红层溶蚀特征与机理[J]. 中国岩溶, 2021, 40(5): 768-782.
HAN Haodong, WANG Chunshan, WANG Donghui, LI Pengyue, LI Hua, YANG Tao. Dissolution characteristics and mechanism of gypsum-salt-rich-red beds in Cretaceous Guankou formation in Chengdu[J]. Carsologica Sinica, 2021, 40(5): 768-782.
|
| [19] |
周其健. 成都隐伏石膏岩建筑地基异常沉降机理及处治技术研究[D]. 成都: 西南交通大学, 2021.
Zhou Qijian. Study on mechanism and treatment technology of abnormal settlement of concealed gypsum rock building foundation in Chengdu[D]. Chengdu: Southwest Jiaotong University, 2021.
|
| [20] |
周其健, 郭永春, 屈智辉, 郑立宁, 许福周, 谢强. 水热综合作用下钙芒硝盐岩强度等参数的衰减规律研究[J]. 工程地质学报, 2022, 30(4): 1019-1027.
ZHOU Qijan, GUO Yongcun, QU Zhihui, ZHEN Lining, XU Fuqiang, XIE qiang. Strength decay law of glauberite salt rock with water and temperature[J]. Journal of Engineering Geology, 2022, 30(4): 1019-1027.
|
| [21] |
徐文斌. 成都天府新区灌口组芒硝/石膏溶蚀规律研究[D]. 成都: 成都理工大学, 2020.
Xu Wenbin. Study on dissolution of mirabilite/gypsum in Guankou Formation, Tianfu New Area[D]. Chengdu: Chengdu University of Technology, 2020.
|
| [22] |
钟志彬, 冯杰, 吕蕾, 周其健, 李思嘉, 薛昌汭. 红层石膏夹层静动水溶蚀特性试验研究[J]. 中国岩溶, 2025,44(1): 15-23.
ZHONG Zhibin, FENG Jie, LYU Lei, ZHOU Qijian, LI Sijia, XUE Changrui. Experimental study on static and dynamic water dissolution characteristics of red layer gypsum interlayer[J]. Carsologica Sinica, 2025,44(1):15-23.
|
| [23] |
王子忠, 许模. 四川盆地含膏盐红层特征及坝基工程地质问题(I)[J]. 水利水电技术, 2011, 42(3): 10-12.
Wang Zizhong, Xu Mo. Characteristics of red bed containing saline deposit and engineering geological issues of dam foundation in Sichuan Basin(I)[J]. Water Resources and Hydropower Engineering, 2011, 42(3): 10-12.
|
| [24] |
韩继伟. 某场地红层岩溶发育特征及工程影响研究[D]. 成都: 成都理工大学, 2015.
HAN Jiwei. Study on Project Impact and Development Features of the Red layer of karst of the venue[D]. Chengdu: Chengdu University of Technology, 2015.
|
| [25] |
James A N, Cooper A H, Holliday D W. Solution of the gypsum cliff Permian, Middle Marl. by the River Ure at Ripon Parks, North Yorkshire[J]. Yorkshire Geol. 1981, 43, 433−450.
|
| [26] |
Klimchouk A B, Aksem S D. Hydrochemistry and solution rates in gypsum karst: case study from the Western Ukraine[J]. Environ Geology, 2005, 48: 307-319. doi: 10.1007/s00254-005-1277-3
|
| [27] |
Aljubouri Z A, Al-Kawaz H A. Dissolution rate of gypsum under different environments[J]. Iraqi Journal of Earth Sciences, 2007, 7(2): 11-18.
|
| [28] |
Calligaris C, Ghezzi L, Petrini R, Lenaz D, Zini L. Evaporite Dissolution Rate through an on-site Experiment into Piezometric Tubes Applied to the Real Case-Study of Quinis (NE Italy)[J]. Geosciences, 2019, 9(7): 298. doi: 10.3390/geosciences9070298
|
| [29] |
Busetti A, Calligaris C, Zini L. Gypsum Dissolution Rate, New Data and Insights[A]//EuroKarst 2022, Málaga. Advances in Karst Science[C]. Springer, Cham.2023:207-213 https://doi.org/10.1007/978-3-031-16879-6_30.
|
| [30] |
魏玉峰, 聂德新. 第三系红层中石膏溶蚀特性及其对工程的影响[J]. 水文地质工程地质, 2005(2): 62-64. doi: 10.3969/j.issn.1000-3665.2005.02.013
WEI Yufeng, NIE Dexin. The speciality of gypsum dissolution of the Neogene red clay and its influence to engineering[J]. Hydrogeology & Engineering Geology, 2005(2): 62-64. doi: 10.3969/j.issn.1000-3665.2005.02.013
|
| [31] |
Jin Q X, Perry L N, Bullard J W. Temperature dependence of gypsum dissolution rates[J]. Cement and Concrete Research, 2020, 129, 105969. https://doi.org/10.1016/j.cemconres.2019.105969.
|
| [32] |
Peruffo M, Mbogoro M M, Edwards M A, Unwin P R. Holistic approach to dissolution kinetics: linking direction-specific microscopic fluxes, local mass transport effects and global macroscopic rates from gypsum etch pit analysis[J]. Phys Chem Chem Phys, 2013, 15(6): 1956-65. doi: 10.1039/c2cp43555a
|