• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 5
Oct.  2025
Turn off MathJax
Article Contents
LI Zhijie, JIANG Guanghui, GUO Fang, LIU Fan, WEI Liqiong, WANG Qigang. Application of radon dynamics in analyzing karst spring flood processes: A case study of the Yaji Experimental Site, Guilin[J]. CARSOLOGICA SINICA, 2025, 44(5): 949-958. doi: 10.11932/karst20250503
Citation: LI Zhijie, JIANG Guanghui, GUO Fang, LIU Fan, WEI Liqiong, WANG Qigang. Application of radon dynamics in analyzing karst spring flood processes: A case study of the Yaji Experimental Site, Guilin[J]. CARSOLOGICA SINICA, 2025, 44(5): 949-958. doi: 10.11932/karst20250503

Application of radon dynamics in analyzing karst spring flood processes: A case study of the Yaji Experimental Site, Guilin

doi: 10.11932/karst20250503
  • Received Date: 2024-10-31
  • Accepted Date: 2025-05-09
  • Rev Recd Date: 2025-04-12
  • Available Online: 2026-01-13
  • This study utilized the naturally occurring tracer radon (222Rn) to analyze the hydrological responses of a karst spring system, aiming to elucidate variations in flow composition and recharge pathways within the karst aquifer. Three typical flood events were investigated at the Yaji Experimental Site in Guilin to understand the response mechanisms of this karst aquifer, which exhibits high heterogeneity due to its conduit-fracture system. This heterogeneity leads to rapid responses to rainfall, frequently resulting in flash floods. High-resolution monitoring of spring discharge, electrical conductivity, stable hydrogen isotope (δ2H), and 222Rn activity during these events captured the dynamic response of the system to rainfall-induced recharge, allowing for an assessment of contributions from different water sources to spring discharge. These sensitive hydrological indicators, including 222Rn and other hydrochemical parameters, revealed the complexities of aquifer recharge processes, thereby enriching our understanding of karst system responses to intense precipitation.The response time and tracer variations in the karst spring exhibited significant dependence on rainfall intensity and duration, showing a notable lag effect. Peak spring discharge lagged behind rainfall peaks by 5 to 12 hours, depending on specific rainfall characteristics. A decrease in electrical conductivity after peak discharge suggested a rapid influx of surface runoff; conversely, the peak in ²²²Rn activity was delayed by approximately 10 hours relative to the conductivity peak, indicating multi-pathway recharge into the aquifer. While conductivity primarily reflected the rapid influx of surface runoff, the delayed 222Rn peak indicated slower percolation through the soil and epikarst zone. Variations in hydrogen isotopes further illustrated the mixing between event water and pre-event water, highlighting complex recharge dynamics under varying rainfall conditions.Under the influence of rainfall intensity and recharge pathways, the responses of various tracers to rainfall events showed significant differences. During high-intensity rainfall, rapid surface runoff infiltrated the system, significantly altering spring hydrochemistry. In contrast, recharge from the soil and epikarst zone, characterized by slow infiltration, gradually increased 222Rn activity. End-member analysis, based on tracer concentrations, differentiated pre-event water (stored water prior to rainfall) from newly introduced event water. Modeling indicated that changes in conductivity and 222Rn activity corresponded to rapid surface input and slower subsurface recharge, capturing the effects of diverse recharge sources and pathways.Post-rainfall increases in 222Rn activity suggested prolonged recharge from the soil and epikarst zone, a feature not fully captured by conductivity and δ2H data. The delayed 222Rn response highlighted the sustained recharge from the epikarst zone, thereby enhancing the understanding of recharge timing and pathways in karst systems. 222Rn has been validated as an effective tracer in groundwater recharge processes, providing valuable insights for water resource management in karst regions. By distinguishing the contributions of surface runoff and groundwater flow, this method offers significant implications for flood risk prediction and groundwater recharge management, providing essential support for water resource planning and risk management in karst landscapes.

     

  • loading
  • [1]
    马天文, 徐国策, 赵超志, 毛金沙, 徐明珠, 熊海晶, 魏全, 方康, 万顺. 基于氢氧稳定同位素示踪的秦岭森林小流域径流水源解析[J]. 地球科学与环境学报, 2022, 44(3): 545-557.

    MA Tianwen, XU Guoce, ZHAO Chaozhi, MAO Jinsha, XU Mingzhu, XIONG Haijing, WEI Quan, FANG Kang, WAN Shun. Water Source Analysis of Runoff in Qinling Forest Small Watershed, China Based on H-O Stable Isotope Tracing[J]. Journal of Earth Science and Environment, 2022, 44(3): 545-557.
    [2]
    王国庆, 翟然, 万思成, 刘艳丽, 许意军. 清流河流域场次暴雨洪水特征及其对降水的响应关系[J]. 水资源与水工程学报, 2015, 26(4): 7-11.

    WANG Guoqing, ZHAI Ran, WAN Sicheng, LIU Yanli, XU Yijun. Characteristics of storm floods and its responses to precipitation indices for the Qingliu River catchment[J]. Journal of Water Resources & Water Engineering, 2015, 26(4): 7-11.
    [3]
    姜光辉, 于奭, 常勇. 利用水化学方法识别岩溶水文系统中的径流[J]. 吉林大学学报(地球科学版), 2011, 41(5): 1535-1541.

    JIANG Guanghui, YU Shi, CHANG Yong. Identification of Runoff in Karst Hydrological Systems Using Hydrochemical Methods[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5): 1535-1541.
    [4]
    Liu F, Jiang G H, Wang G C, Guo F, Wang J, Wang Q G, Shi J, Cai J Y, Wang M. Surface-subsurface hydrological processes of rainwater harvesting project in karst mountainous areas indicated by stable hydrogen and oxygen isotopes[J]. Science of The Total Environment, 2022, 831: 154924. doi: 10.1016/j.scitotenv.2022.154924
    [5]
    罗明明, 尹德超, 张亮, 陈植华, 周宏, 韩兆丰, 史婷婷. 南方岩溶含水系统结构识别方法初探[J]. 中国岩溶, 2015, 34(6): 543-550. doi: 10.11932/karst20150602

    LUO Mingming, YIN Dechao, ZHANG Liang, CHEN Zhihua, ZHOU Hong, HAN Zhaofeng, SHI Tingting. Identifying methods of karst aquifer system structure in South China[J]. Carsologica Sinica, 2015, 34(6): 543-550. doi: 10.11932/karst20150602
    [6]
    瞿思敏, 包为民, Jeffrey J. Mc Donnell, 余钟波, 石朋. 同位素示踪剂在流域水文模拟中的应用[J]. 水科学进展, 2008(4): 587-596.

    QU Simin, BAO Weimin, Jeffrey J. Mc Donnell , YU Zhongbo, SHI Peng. Application of Isotopic Tracers in Watershed Hydrological Modeling[J]. Advances in Water Science, 2008(4): 587-596.
    [7]
    Kim H, Cho S H, Lee D, Jung Y Y, Kim Y H, Koh D C, Lee J. Influence of pre-event water on streamflow in a granitic watershed using hydrograph separation[J]. Environmental Earth Sciences, 2017, 76(2): 82. doi: 10.1007/s12665-017-6402-6
    [8]
    Sukanya S, Noble J, Joseph S. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview[J]. Chemosphere, 2022, 303: 135141. doi: 10.1016/j.chemosphere.2022.135141
    [9]
    郭永丽, 吴佩艳, 黄芬, 孙平安, 苗迎, 刘绍华. 环境同位素示踪的毛村地下河流域水流特征[J]. 中国岩溶, 2022, 41(4): 577-587.

    GUO Yongli, WU Peiyan, HUANG Fen, SUN Pingan, MIAO Ying, LIU Shaohua. Water flow characteristics of Maocun underground river basin based on environmental isotopes[J]. Carsologica Sinica, 2022, 41(4): 577-587.
    [10]
    廖福, 罗新, 谢月清, 易立新, 李海龙, 王广才. 氡(222Rn)在地下水-地表水相互作用中的应用研究进展[J]. 地学前缘, 2022, 29(3): 76-87.

    LIAO Fu, LUO Xin, XIE Yueqing, YI Lixin, LI Hailong, WANG Guangcai. Advances in 222Rn application in the study of groundwater-surface water interactions[J]. Earth Science Frontiers, 2022, 29(3): 76-87.
    [11]
    何炳毅, 杨英魁, 孔凡翠, 左进超, 范志平, 雷占昌, 蒋常菊, 王建萍, 凌智永, 郑雁莉. 青海湖布哈河流域枯水期氢氧同位素和氡同位素分布特征及其意义[J]. 地质学报, 2023, 97(6): 2042-2053.

    HE Bingyi, YANG Yingkui, KONG Fancui, ZUO Jinchao, FAN Zhiping, LEI Zhanchang, JIANG Changju, WANG Jianping, LING Zhiyong, ZHENG Yanli. The distribution characteristics and significance of stable (δD and δ18O) and radon-222 isotopes in the Buha River basin of Qinghai Lake during dry season[J]. Acta Geologica Sinica, 2023, 97(6): 2042-2053.
    [12]
    Tan H B, Chen X, Shi D P, Rao W B, Liu J, Liu J T, Eastoe C J, Wang J R. Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge[J]. Science of The Total Environment, 2021, 759: 143510. doi: 10.1016/j.scitotenv.2020.143510
    [13]
    郭占荣, 李开培, 袁晓婕, 章斌, 马志勇. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270.

    GUO Zhanrong, LI Kaipei, YUAN Xiaojie, ZHANG Bin, MA Zhiyong. Assessment of Groundwater Input to Wuyuan Bay Using Radon-222[J]. Advances in Water Science, 2012, 23(2): 263-270.
    [14]
    A Kies, H Hofmann, Z Tosheva, L Hoffmann, L Pfister. Using 222Rn for hydrograph separation in a micro basin (Luxembourg)[J]. Annals of Geophysics, 2009, 48(1). 101-107.
    [15]
    周冰洁. 岩溶区土壤氡异常及其成因研究[D]. 衡阳: 南华大学, 2021.

    ZHOU Bingjie. Anomaly and causes of soil radon in karst area[D]. Hengyang: University of South China, 2021.
    [16]
    Ma Q, Zhou B J, Feng Z G, Bai J L, Zhang L Y, Liu W. A preliminary study on soil radon anomaly and its formation mechanism in karst area of southwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(5): 2045-2054. doi: 10.1007/s10967-022-08259-4
    [17]
    Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1-2): 21-35. doi: 10.1016/S0265-931X(03)00084-5
    [18]
    马浩天, 甄志磊, 武小钢. 汾河源头水源稳定同位素特征及水源解析[J]. 环境化学, 2021, 40(11): 3432-3442. doi: 10.7524/j.issn.0254-6108.2021022102

    MA Haotian, ZHEN Zhilei, WU Xiaogang. Stable isotope characteristics of the headstream region of Fenhe River and water resource analysis[J]. Environmental Chemistry, 2021, 40(11): 3432-3442. doi: 10.7524/j.issn.0254-6108.2021022102
    [19]
    赵思远, 贾仰文, 唐颖栋, 牛存稳, 燕翔, 龚家国, 甘永德. 基于同位素示踪的黄土塬区小流域径流组分来源解析研究[J]. 水利水电技术(中英文), 2022, 53(8): 58-70.

    ZHAO Siyuan, JIA Yangwen, TANG Yingdong, NIU Cunwen, YAN Xiang, GONG Jiaguo, GAN Yongde. Study on runoff components in small watershed in loess tableland based on isotope tracing[J]. Water Resources and Hydropower Engineering, 2022, 53(8): 58-70.
    [20]
    潘钊, 孙自永, 马瑞, 常启昕, 胡雅璐, 刘源, 王旭. 黑河上游高寒山区降雨-径流形成过程的同位素示踪[J]. 地球科学, 2018, 43(11): 4226-4236.

    PAN Zhao, SUN Ziyong, MA Rui, CHANG Qixin, HU Yalu, LIU Yuan, WANG Xu. Isotopic Investigation of Rainfall-Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai-Tibet Plateau[J]. Earth Science, 2018, 43(11): 4226-4236.
    [21]
    Sklash M G, Farvolden R N. The role of groundwater in storm runoff[J]. Journal of Hydrology, 1979, 43(1-4): 45-65. doi: 10.1016/0022-1694(79)90164-1
    [22]
    郭芳, 韦丽琼, 姜光辉. 广西典型岩溶水系统环境中222Rn的分布及指示意义[J]. 中国环境科学, 2021, 41(9): 4294-4299.

    GUO Fang, WEI Liqiong, JIANG Guanghui. Characteristic of radon in typical karst water systems and its indicating significance in Guangxi, China[J]. China Environmental Science, 2021, 41(9): 4294-4299.
    [23]
    Hoehn E, Von Gunten H R. Radon in groundwater: A tool to assess infiltration from surface waters to aquifers[J]. Water Resources Research, 1989, 25(8): 1795-1803. doi: 10.1029/WR025i008p01795
    [24]
    Pinder G F, Jones J F. Determination of the ground-water component of peak discharge from the chemistry of total runoff[J]. Water Resources Research, 1969, 5(2): 438-445. doi: 10.1029/WR005i002p00438
    [25]
    常勇, 姜光辉, 康彩霞, 于奭. 峰丛洼地坡面流径流过程:以丫吉试验场为例[J]. 水文, 2010, 30(6): 19-23.

    CHANG Yong, JIANG Guanghui, KANG Caixia, YU Shi. Runoff Processes on Slope Surfaces in Peak-Cluster Depressions: A Case Study from the Yaji Experimental Site[J]. Journal of China Hydrology, 2010, 30(6): 19-23.
    [26]
    Tallini M, Parisse B, Petitta M, Spizzico M. Long-term spatio-temporal hydrochemical and 222Rn tracing to investigate groundwater flow and water−rock interaction in the gran sasso (central italy) carbonate aquifer[J]. Hydrogeology Journal, 2013, 21(7): 1447-1467. doi: 10.1007/s10040-013-1023-y
    [27]
    Monnin M, Seidel J. Radon concentrations in karstic aquifers[J]. Geofísica Internacional, 2002, 41(3): 265-270.
    [28]
    姜光辉, 郭芳. 岩溶水柜集流坡面的径流模式和调控建议[J]. 水科学进展, 2021, 32(2): 271-278.

    JIANG Guanghui, GUO Fang. The Runoff Pattern and Regulation Recommendations for Converging Slopes in Karst Water Reservoirs[J]. Advances in Water Science, 2021, 32(2): 271-278.
    [29]
    常勇, 吴吉春, 姜光辉, 于奭. 峰丛洼地岩溶泉流量和水化学变化过程中地面径流的作用[J]. 水利学报, 2012, 43(9): 1050-1057.

    CHANG Yong, WU Jichun, JIANG Guanghui, YU Shi. The Role of Surface Runoff in the Discharge and Hydrochemical Variations of Karst Springs in Peak-Cluster Depressions[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1050-1057.
    [30]
    Wang S, Fu Z Y, Chen H S, Nie Y P, Xu Q X. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope[J]. Journal of Hydrology, 2020, 580: 124370. doi: 10.1016/j.jhydrol.2019.124370
    [31]
    郭小娇, 龚晓萍, 汤庆佳, 陈长杰, 姜光辉, 李鑫, 邹艳娥. 典型岩溶山坡土壤剖面水分对降雨响应过程研究[J]. 中国岩溶, 2016, 35(6): 629-638.

    GUO Xiaojiao, GONG Xiaoping, TANG Qingjia, CHEN Changjie, JIANG Guanghui, LI Xin, ZOU Yan’e. The response processes of moisture at soil profile to precipitation in typical karst hillslopes[J]. Carsologica Sinica, 2016, 35(6): 629-638.
    [32]
    Wang Y, Dai Q H, Ding P W, Li K F, Yi X, He J, Peng X, Yan Y, Zhao M, Yang Y. Rapid Response of Runoff Carrying Nitrogen Loss to Extreme Rainfall in Gentle Slope Farmland in the Karst Area of SW China[J]. Water, 2022, 14(20): 3341. doi: 10.3390/w14203341
    [33]
    刘再华, Chris GROVES, 袁道先, Joe MEIMAN, 姜光辉, 何师意. 水-岩-气相互作用引起的水化学动态变化研究: 以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003(4): 13-18. doi: 10.3969/j.issn.1000-3665.2003.04.003

    LIU Zaihua, Chris GROVES, YUAN Daoxian, Joe MEIMAN, JIANG Guanghui, HE Shiyi. Study on the hydrochemical variations caused by the water-rock-gas interaction : an example from the Guilin Karst Experimental Site[J]. Hydrogeology & Engineering Geology, 2003(4): 13-18. doi: 10.3969/j.issn.1000-3665.2003.04.003
    [34]
    Jiang G H, Guo F, Polk J S, Kang Z Q, Wu J. Delineating vulnerability of karst aquifers using hydrochemical tracers in Southwestern China[J]. Environmental Earth Sciences, 2015, 74(2): 1015-1027. doi: 10.1007/s12665-014-3862-9
    [35]
    Fu Z Y, Chen H S, Zhang W, Xu Q X, Wang S, Wang K L. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study[J]. Geomorphology, 2015, 250: 1-14. doi: 10.1016/j.geomorph.2015.08.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (201) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return