| Citation: | YANG Yang, ZHAO Liangjie. Comparative study of deep learning models for daily karst spring discharge forecasting: LSTM Versus Hybrid VMD–LSTM[J]. CARSOLOGICA SINICA, 2025, 44(5): 937-948. doi: 10.11932/karst20250502 |
| [1] |
王晋丽, 陈 喜, 张志才, 康建荣, 胡晋山. 基于MODFLOW的离散裂隙网络渗流分析[J]. 中国岩溶, 2025, 44(1): 1-14. doi: 10.11932/karst2024y043
WANG Jinli, CHEN Xi, ZHANG Zhicai, KANG Jianrong, HU Jinshan. MODFLOW-based analysis on seepage in discrete fissure networks[J]. Carsologica Sinica, 2025, 44(1): 1-14. doi: 10.11932/karst2024y043
|
| [2] |
Hartmann A, Goldscheider N, Wagener T, Lange J, Weiller W. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
|
| [3] |
赵良杰, 王莹, 周妍, 曹建文, 杨杨, 王喆. 基于 SWAT 模型的珠江流域地下水资源评价[J]. 地球科学, 2024, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004
ZHAO Liangjie, WANG Ying, ZHOU Yan, CAO Jianwen, YANG Yang, WANG Zhe. Groundwater resources evaluation in the Pearl River basin based on SWAT model[J]. Earth Science, 2024, 49(5): 1876-1890. doi: 10.3799/dqkx.2022.004
|
| [4] |
杨丽, 杨广斌, 李亦秋, 李蔓. 修正SWAT模型在喀斯特小流域的径流模拟研究: 以羊鸡冲小流域为例[J]. 中国岩溶, 2024, 43(2): 291-301.
YANG Li, YANG Guangbin, LI Yiqiu, LI Man. Runoff simulation of modified SWAT model in karst watershed: A case study of Yangjichong sub-watershed[J]. Carsologica Sinica, 2024, 43(2): 291-301.
|
| [5] |
解子轩, 江峰, 王若帆, 吉勤克补子, 史浙明, 赵良杰. 基于GMS的岩溶地下河水流与溶质运移过程模拟研究[J]. 中国岩溶, 2025, 44(1): 57-69. doi: 10.11932/karst20250104
XIE Zixuan, JIANG Feng, WANG Ruofan, JIQIN Kebuzi, SHI Zheming, ZHAO Liangjie. Simulation study of groundwater flow and solute transport processes in karst underground rivers based on GMS[J]. Carsologica Sinica, 2025, 44(1): 57-69. doi: 10.11932/karst20250104
|
| [6] |
陈喜, 刘传杰, 胡忠明, 李献昆. 泉域地下水数值模拟及泉流量动态变化预测[J]. 水文地质工程地质, 2006, 33(2): 36-40.
CHEN Xi, LIU Chuanjie, HU Zhongming, LI Xiankun. Numerical modeling of groundwater in a spring catchment and prediction of variations in the spring discharge[J]. Hydrogeology & Engineering Geology, 2006, 33(2): 36-40.
|
| [7] |
Jourde H, Wang X. Advances, challenges and perspective in modelling the functioning of karst systems: A review[J]. Environmental Earth Sciences, 2023, 82(17): 396. doi: 10.1007/s12665-023-11034-7
|
| [8] |
Chen Z, Lucianetti G, Hartmann A. Understanding groundwater storage and drainage dynamics of a high mountain catchment with complex geology using a semi-distributed process-based modelling approach[J]. Journal of Hydrology, 2023, 625: 130067. doi: 10.1016/j.jhydrol.2023.130067
|
| [9] |
邢立文, 崔宁博. 基于人工神经网络的晋祠泉水位模拟研究[J]. 人民黄河, 2019, 41(12): 63-69. doi: 10.3969/j.issn.1000-1379.2019.12.015
XING Liwen, CUI Ningbo. Simulation of Jinci Spring water level on ANN Models[J]. Yellow River, 2019, 41(12): 63-69. doi: 10.3969/j.issn.1000-1379.2019.12.015
|
| [10] |
Fang L, Shao D. Application of long short-term memory (LSTM) on the prediction of rainfall-runoff in karst area[J]. Frontiers in Physics, 2022, 9: 790687.
|
| [11] |
Vu M T, Jardani A, Massei N, Foumier M. Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network[J]. Journal of Hydrology, 2021, 597(1): 125776. doi: 10.1016/j.jhydrol.2020.125776
|
| [12] |
Kratzert F, Klotz D, Herrnegger M, Sampson A K, Hochreiter S, Nearing G S. Toward improved predictions in ungauged basins: Exploiting the power of machine learning[J]. Water Resources Research, 2019, 55(12): 11344-11354. doi: 10.1029/2019WR026065
|
| [13] |
Gholizadeh H, Zhang Y, Frame J, Gu X, Green C T. Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama[J]. Science of the Total Environment, 2023, 901: 165884. doi: 10.1016/j.scitotenv.2023.165884
|
| [14] |
Le M H, Kim H, Adam S, Do H X, Beling P A, Lakshmi. Streamflow estimation in ungauged regions using machine learning: Quantifying uncertainties in geographic extrapolation[J]. Hydrology and Earth System Sciences, 2022: 1-24.
|
| [15] |
马从文, 张志才, 陈喜, 程勤波, 彭韬, 张林. 基于机器学习的西南岩溶泉流量模拟研究[J]. 中国岩溶, 2024, 43(1): 48-56.
MA Congwen, ZHANG Zhicai, CHEN Xi, CHENG Qinbo, PENG Tao, ZHANG Lin. Modelling karst spring flow in southwest China based on machine learning [J]. Carsologica Sinica, 2024, 43(1): 48-56.
|
| [16] |
Willard J, Jia X, Xu S, Steinbach M, Kumar V. Integrating scientific knowledge with machine learning for engineering and environmental systems[J]. ACM Computing Surveys, 2022, 55(4): 1-37.
|
| [17] |
温忠辉, 任化准, 束龙仓, 王恩, 柯婷婷, 陈荣波. 岩溶地下河日流量预测的小样本非线性时间序列模型[J]. 吉林大学学报 (地球科学版), 2011, 41(2): 455-458.
WEN Zhonghui, REN huazhun, SU Longcang, WANG En, KE Tingting, CHEN Rongbo. Daily discharge forecast of karst underground river on non-linear time series model of a small sample[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(2): 455-458.
|
| [18] |
郝永红, 黄登宇, 张文忠, 王学萌. 山西神头泉流量的灰色预测模型研究[J]. 水利学报, 2004, 35(2): 111-114.
HAO Yonghong, HUANG Dengyu, ZHANG Wenzhong, WANG Xuemeng. Gray prediction model for forecasting spring discharge [J]. Shuili Xuebao, 2004, 35(2): 111-114.
|
| [19] |
Renard B, Kavetski D, Leblois E, Thyer M, Kuczera G, Franks S W. Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation[J]. Water Resources Research, 2011, 47(11): 11516.
|
| [20] |
Zhou R, Wang Q, Jin A, Shi W, Liu S. Interpretable multi-step hybrid deep learning model for karst spring discharge prediction: Integrating temporal fusion transformers with ensemble empirical mode decomposition[J]. Journal of Hydrology, 2024, 645: 132235.
|
| [21] |
An L, Hao Y, Yeh. Simulation of karst spring discharge using a combination of singular spectrum analysis and ensemble empirical mode decomposition with LSTM modeling[J]. Environmental Earth Sciences, 2020, 79: 353. doi: 10.1007/s12665-020-09096-1
|
| [22] |
Zhang S, Zhao Z, Wu J, Jin Y, Jeng D S, Li S, Li G, Ding D. Solving the temporal lags in local significant wave height prediction with a new VMD-LSTM model[J]. Ocean Engineering, 2024, 313: 119385.
|