• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 44 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
ZHANG Xiaowen, WANG Chuan, YANG Yanna, FAN Shijie, YU Lei, XU Xiaoqing. Development characteristics and controlling factors of red-bed karst in the southern section of Longmen Mountain at the edge of Sichuan Basin[J]. CARSOLOGICA SINICA, 2025, 44(2): 300-315. doi: 10.11932/karst20250208
Citation: ZHANG Xiaowen, WANG Chuan, YANG Yanna, FAN Shijie, YU Lei, XU Xiaoqing. Development characteristics and controlling factors of red-bed karst in the southern section of Longmen Mountain at the edge of Sichuan Basin[J]. CARSOLOGICA SINICA, 2025, 44(2): 300-315. doi: 10.11932/karst20250208

Development characteristics and controlling factors of red-bed karst in the southern section of Longmen Mountain at the edge of Sichuan Basin

doi: 10.11932/karst20250208
  • Received Date: 2024-10-09
  • During the Jurassic to Cretaceous periods, a set of continental red basin sediments were deposited in front of Longmen Mountain on the western margin of the Sichuan Basin. The predominant lithology consisted of mud-calcium cemented sandstone (conglomerate). Under the action of groundwater dissolution, the rock layer has been developed with large-scale karst phenomena, including depressions and extensive horizontal karst caves that extend thousands of meters. These features pose a major threat to the safety of constructing reservoirs and tunnels in the study area. Based on existing geological and hydrogeological investigations, combined with ground surveys, and identification of rock and mineral types, this study examines the development characteristics and controlling factors of sandstone (conglomerate) dissolution from multiple perspectives. These perspectives include macroscopic structural evolution, sedimentary environment, hydrodynamic conditions, microscopic mineral composition, and cementing characteristics. The main conclusions of this study are as follows.The karst forms developed on the surface of the study area mainly include karst depressions, karst hills, sinkholes, stone teeth, karst valleys, karst fissures, and karst gullies. In the conglomerate area, circular depressions resulting from collapses are often formed on the surface, with sinkholes frequently developing at the base. In contrast, the sandstone area is typically eroded by surface water along joints and fissures, leading to the formation of long troughs or irregular corrosion funnels. The underground karst phenomenon is characterized by karst caves, which contain deposits such as stalactites, stone mantles, and stone flowers. These karst deposits are relatively rare and often impure, primarily consisting of gray muddy calcareous mixture that is mainly composed of calcium carbonate mixed with clay materials. The entire karst phenomenon exhibits the features typical of early-stage karst landforms, which can be classified as either red-bed karst landforms or sandy gravel karst landforms.The karst phenomenon is mainly developed along the bedding plane in the trend of rock formations, and secondarily in the dip direction. The local extension direction is controlled by the joints and fissures. In the areas with strong karst development, the lithology of the strata is dominated by calcareous conglomerate of the Guankou formation (K2g) and the Tianmashan formation (K1t). The karst morphology is diverse and of large scale, often featuring a complete set of karst systems, developed with vertical recharge and horizontal discharge. In the areas with moderate karst development, the lithology consists of calcareous conglomerate of the Guankou formation (K2g) and the Tianmashan formation (K1t), conglomerate of the Mingshan formation (E1-2m), and sandstone of the Shaximiao formation (J2s) and the Penglai formation (J3p). In this area, karst fissures and pores are widely developed, with visible karst caves and small-scale karst pipelines. The depth of horizontal karst development is generally less than 100 meters. In the areas of weak karst development, the main lithology is dominated by conglomerate of the Mingshan formation (E1-2m), and sandstone and mudstone of the Jiaguan formation (K2j), the Shaximiao formation (J2s), and the Shaximiao formation (J3p). The main karst phenomena are karst fissures and pores developed along the bedding plane or dominant joints.The sedimentary environment is the fundamental internal factor controlling karst development. The complex and variable sedimentary environment has led to differences in lithology and structures of rock groups in both the planar and vertical directions within the study area, which in turn control the location and intensity of red-bed karst development. The provenance of Mesozoic and part of Paleozoic carbonate rocks in the north–west of the study area ensured the solubility of sandy conglomerate in the area. The alluvial fan sediments corresponding to the three intense tectonic phases during the Yanshanian Period are manifested as areas with strong karst development. Differences in lithology lead to variations in soluble mineral contents, showing a trend of gradually decreasing solubility from calcareous conglomerate to conglomeratic sandstone, then to siltstone, and finally to mudstone, accompanied by a corresponding weakening of karst action. Hydrodynamic conditions under the control of climate, topography, and geological structures are important external factors affecting karst development. The warm and humid climate in the study area provides abundant recharge and erosion capacity for groundwater. The landform and strong tectonic action control the scale and extension direction of red-bed karst development. During the Neotectonic Movement, intermittent uplift and stability have resulted in a multi-layered karst system in the study area, which corresponds, to some extent, with the multi-tiered river terraces.

     

  • loading
  • [1]
    四川省地方志编纂委员会. 四川省志·地质志[M]. 成都: 四川科学技术出版社, 1998.

    Sichuan Provincial Local Chronicles Compilation Committee. Geological Annals of Sichuan Province[M]. Chengdu: Sichuan Science and Technology Press, 1998.
    [2]
    袁道先. 岩溶学词典[M]. 北京: 地质出版社, 1988.

    YUAN Daoxian. Glossary of Karstology [M]. Beijing: Geological Publishing House, 1988.
    [3]
    陈安泽. 论砂(砾)岩地貌类型划分及其在旅游业中的地位和作用[J]. 国土资源导刊, 2004(1):11-16. doi: 10.3969/j.issn.1672-5603.2004.01.004

    CHEN Anze. On the classification of sand (gravel) rock landform types and its status and role in tourism[J]. Land & Resources Herald, 2004(1): 11-16. doi: 10.3969/j.issn.1672-5603.2004.01.004
    [4]
    梁诗经, 文斐成, 陈斯盾. 福建泰宁丹霞地貌中的洞穴类型及成因浅析[J]. 福建地质, 2008(3):296-307. doi: 10.3969/j.issn.1001-3970.2008.03.006

    LIANG Shijing, WEN Feicheng, CHEN Sidun. On Grotto types and their origin of the Danxia landform in Taining county of Fujian Province[J]. Geology of Fujian, 2008(3): 296-307. doi: 10.3969/j.issn.1001-3970.2008.03.006
    [5]
    保广普, 张海龙, 陈光庭. 青海省曲什安砂砾岩峰林地貌及其国内对比[J]. 西北地质, 2018, 51(3):253-258. doi: 10.3969/j.issn.1009-6248.2018.03.024

    BAO Guangpu, ZHANG Hailong, CHEN Guangting. Glutenite peak-forest landform in Qushi'An, Qinhai Province and its domestic comparison significance[J]. Northwestern Geology, 2018, 51(3): 253-258. doi: 10.3969/j.issn.1009-6248.2018.03.024
    [6]
    彭华, 潘志新, 闫罗彬, Scott SIMONSON. 国内外红层与丹霞地貌研究述评[J]. 地理学报, 2013, 68(9):1170-1181. doi: 10.11821/dlxb201309002

    PENG Hua, PAN Zhixin, YAN Luobin, Scott SIMONSON. A review of theresearch on red beds and Danxia landform[J]. Acta Geographica Sinica, 2013, 68(9): 1170-1181. doi: 10.11821/dlxb201309002
    [7]
    刘尚仁, 黄瑞红. 广东红层岩溶地貌与丹霞地貌[J]. 中国岩溶, 1991, 10(3):16-22.

    LIU Shangren, HUANG Ruihong. Red bed karst landform and the Danxia landform in Guangdong Province[J]. Carsologica Sinica, 1991, 10(3): 16-22.
    [8]
    Peter W, Huntoon. Hydrogeologie Characteristics and Deforestation of the Stone Forest Karst Aquifers of South China[J]. Ground Water, 1992, 30: 167-176 doi: 10.1111/j.1745-6584.1992.tb01788.x
    [9]
    张强. 金沙江观音岩电站红层钙质砂岩类岩溶发育特征及渗透稳定性研究[D]. 成都: 成都理工大学, 2010.

    ZHANG Qiang. Semikarst development characteristics and engineering seepage stability of the calcareous sandstone red beds of Guanyinyan hydropower, Jinsha River[D]. Chengdu: Chengdu University of Technology, 2010.
    [10]
    郭永春, 谢强, 文江泉. 我国红层分布特征及主要工程地质问题[J]. 水文地质工程地质, 2007(6):67-71. doi: 10.3969/j.issn.1000-3665.2007.06.016

    GUO Yongchun, XIE Qiang, WEN Jiangquan. Red beds distribution and engineering geological problem in China[J]. Hydrogeology and Engineering Geology, 2007(6): 67-71. doi: 10.3969/j.issn.1000-3665.2007.06.016
    [11]
    王子忠. 四川盆地红层岩体主要水利水电工程地质问题系统研究[D]. 成都:理工大学, 2011.

    WANG Zizhong. Systematic researches on red bed rock mass engineering geological problems of water resources and hydropower projects in Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology, 2011.
    [12]
    姜伏伟, 董颖, 苏孝良, 陈友智, 于宁, 曹晓娟. 试论红色岩溶概念及其科学价值[J]. 中国岩溶, 2020, 39(5):775-780. doi: 10.11932/karst20200513

    JIANG Fuwei, DONG Ying, SU Xiaoliang, CHEN Youzhi, YU Ning, CAO Xiaojuan. Preliminary discussion on the concept of red karst and its scientific value[J]. Carsologica Sinica, 2020, 39(5): 775-780. doi: 10.11932/karst20200513
    [13]
    姜伏伟, 赖海青, 杨庆坤, 陈友智, 于宁, 杨涛. 湘鄂渝黔交接区隐伏型红色岩溶地貌形态成因及其区域分布[J]. 中国岩溶, 2024, 43(4):948-956.

    ЛANG Fuwei, LAI Haiqing, YANG Qingkun, CHEN Youzhi, YU Ning, YANG Tao. Genesis of topography and regional distribution of the concealed red karst landform in the adjoining area of Hunan-Hubei-Chongqing-Guizhou[J]. Carsologica Sinica, 2024, 43(4): 948-956.
    [14]
    陈友智, 姜伏伟, 陈颖, 杨贵来, 于宁, 苏孝良. 湘渝黔地区奥陶系红色岩溶地貌与沉积作用关系[J]. 中国岩溶, 2024, 43(3):694-703.

    CHEN Youzhi, JIANG Fuwei, CHEN Ying, YANG Guilai, YU Ning , SU Xiaoliang. Relationship between sedimentation and red karst landform during the Ordovician in Hunan, Chongqing and Guizhou[J]. Carsologica Sinica, 2024, 43(3): 694-703.
    [15]
    韦跃龙, 覃建雄, 陈莉莉, 杨更. 四川广元剑门关景区丹霞地貌成因分析及旅游资源评价[J]. 桂林工学院学报, 2007, 27(4):490-495.

    WEI Yuelong, QIN Jianxiong, CHEN Lili, YANG Geng. Danxia landform analysis and tourism resources evaluation in Jianmenguan tourism area[J]. Journal of Guilin University of Technology, 2007, 27(4): 490-495.
    [16]
    韩艳, 罗培, 陈俊伊, 陈秋艳, 张凤秋, 文星跃. 四川盆地北部方山地区砂岩洞穴特征成因分析:以四川营山地质公园为例[J]. 西北地质, 2020, 53(1):243-253.

    HAN Yan, LUO Pei, CHEN Junyi, CHEN Qiuyan, ZHANG Fengqiu, WEN Xingyue. Characteristics and geomophogensis on sandstone cavesin Fangshan area of the Northern Sichuan Basin: A case of the Sichuan Yingshan Geological Park[J]. Northwestern Geology, 2020, 53(1): 243-253.
    [17]
    贾龙, 吴远斌, 潘宗源, 殷仁朝, 蒙彦, 管振德. 我国红层岩溶与红层岩溶塌陷刍议[J]. 中国岩溶, 2016, 35(1):67-73. doi: 10.11932/karst20160110

    JIA Long, WU Yuanbin, PAN Zongyuan, YIN Renchao, MENG Yan, GUAN Zhende. A review of the research on karst and sinkhole of red beds in China[J]. Carsologica Sinica, 2016, 35(1): 67-73. doi: 10.11932/karst20160110
    [18]
    郭福生, 陈留勤, 严兆彬, 刘富军, 潘志新, 张炜强, 胡海平. 丹霞地貌定义、分类及丹霞作用研究[J]. 地质学报, 2020, 94(2): 361-374.

    GUO Fusheng, CHEN Liuqin, YAN Zhaobin, LIU Fujun, PAN Zhixin, ZHANG Weiqiang, HU Haiping. Definition, classification, and danxianization of Danxia landscapes[J]. Acta Geologica Sinica, 2020, 94(2): 361-374.
    [19]
    罗一鸣, 成建梅, 徐文杰, 巴净慧, 黄盛财, 段天宇. 西南岩溶区深埋隧洞涌水条件分析及涌水量预测:以滇中引水工程大坡子隧洞为例[J]. 中国岩溶, 2023, 42(6):1224-1236. doi: 10.11932/karst20230608

    LUO Yiming, CHENG Jianmei, XU Wenjie, BA Jinghui, HUANG Shengcai, DUAN Tianyu. Analysis of water inflow conditions and prediction for water inflow of deep-buried tunnels in the karst area of Southwest China: Taking Dapozi tunnel of central Yunnan Water Diversion Project as an example[J]. Carsologica Sinica, 2023, 42(6): 1224-1236. doi: 10.11932/karst20230608
    [20]
    吴熙纯, 李培华. 四川龙门山前晚侏罗世砾岩喀斯特:砂砾岩地貌的一种特殊类型[C]. 中国地质学会旅游地学与地质公园研究分会第23届年会暨二连恐龙地质公园建设与旅游发展战略研讨会论文集, 2008.

    WU Xichun, LI Peihua. Sichuan Longmen Mountain night Jurassic conglomerate karst: A special type of the conglomerate landform[C]. Proceedings of the 23rd Annual Meeting of Tourism Geoology and Geopark Research Branch of Geological Society of China, 2008.
    [21]
    周绪纶. 芦山县砾岩岩溶形态及景观资源评价[J]. 四川地质学报, 2022, 22(3):178-181.

    ZHOU Xulun. Morphology and Lonodscape resources Assessment of the conglomerate karst in Lushan county[J]. Journal of Sichuan Geology, 2022, 22(3): 178-181.
    [22]
    张人权, 梁杏, 靳孟贵, 万力, 于青春. 水文地质学基础[M]. 北京: 地质出版社, 2011.

    ZHANG Renquan, LIANG Xing, JIN Menggui, WAN Li, YU Qingchun. Hydrogeological basis [M]. Beijing: Geological Publishing House, 2011.
    [23]
    巴特尔, 曾武林. 贵州毕节市岩溶发育影响因素及发育特征浅析[J]. 地下水, 2014, 36(4):241-243. doi: 10.3969/j.issn.1004-1184.2014.04.095

    BA Teer, ZENG Wulin. A brief analysis of the influencing factors and developmental characteristics of karst development in Bijie City, Guizhou Province[J]. Groundwater, 2014, 36(4): 241-243. doi: 10.3969/j.issn.1004-1184.2014.04.095
    [24]
    黄洋阳, 李廷勇, 肖思雅, 陈朝军, 黄冉, 王涛, 吴尧, 徐玉珍, 邱海英, 杨琰, 李俊云. 新生碳酸钙沉积矿物形态的影响因素分析:以重庆芙蓉洞为例[J]. 中国岩溶, 2022, 41(3):488-500. doi: 10.11932/karst20220315

    HUANG Yangyang, LI Tingyong, XIAO Siya, CHEN Chaojun, HUANG Ran, WANG Tao, WU Yao, XU Yuzhen, QIU Haiying, YANG Yan, LI Junyun. Analysis of influencing factors on mineral morphology of active speleothem: A case study of Furong cave in Chongqing[J]. Carsologica Sinica, 2022, 41(3): 488-500. doi: 10.11932/karst20220315
    [25]
    刘自强, 马洪生, 牟云娟. 节理裂隙发育岩溶地基数值模拟稳定性分析[J]. 中国岩溶, 2022, 41(1):100-110. doi: 10.11932/karst20220105

    LIU Ziqiang, MA Hongsheng, MOU Yunjuan. Numerical simulation analysis and evaluation of stability of the karst foundation with developed joints and fissures[J]. Carsologica Sinica, 2022, 41(1): 100-110. doi: 10.11932/karst20220105
    [26]
    马诚佑, 康志强, 张立浩, 玄惠灵, 农培杰, 潘树芬, 孔琪琪, 朱义年, 朱宗强. 方解石在不同水环境中的溶解与沉淀作用[J]. 中国岩溶, 2023, 42(1):29-39. doi: 10.11932/karst20230102

    MA Chengyou, KANG Zhiqiang, ZHANG Lihao, XUAN Huiling, NONG Peijie, PAN Shufen, KONG Qiqi, ZHU Yinian, ZHU Zongqiang. Dissolution and precipitation of calcite in different water environments[J]. Carsologica Sinica, 2023, 42(1): 29-39. doi: 10.11932/karst20230102
    [27]
    四川省地质矿产局. 中华人民共和国区域地质调查报告(比例尺1∶50 000): H-48-51-C火井幅、H-48-63-A夹关幅[R]. 成都, 1995.
    [28]
    林化岭. 四川天全—芦山西部地带白垩纪砾岩岩溶发育规律探讨[J]. 水文地质工程地质, 1988(1):39-41.

    LIN Hualing. Discussion on the development law of Cretaceous conglomerate in western Zone of Tianquan-Lushan, Sichuan[J]. Hydrogeology & Engineering geology, 1988(1): 39-41.
    [29]
    Miki T. Sedimentologic and palaeoclimatic classification of Cre-taceous red beds in East Asia: A general view[J]. Journal of Southeast Asian Earth Sciences, 1992, 7(2/3): 179-184.
    [30]
    毕奔腾, 杨辰, 李景文, 姜建武, 周立新. 基于数字高程模型的中国岩溶地貌研究进展及前景分析[J]. 中国岩溶, 2022, 41(2):318-328. doi: 10.11932/karst20220211

    BI Benteng, YANG Chen, LI Jingwen, JIANG Jianwu, ZHOU Lixin. Research progress and prospect of karst geomorphology in China based on digital elevation model[J]. Carsologica Sinica, 2022, 41(2): 318-328. doi: 10.11932/karst20220211
    [31]
    Sauter M, Giese M, Bailly Comte V, Mare chal J C, Reimann T, Geyer T. Turbulent and laminar flow in karst conduits under unsteady flow conditions: Interpretation of pumping tests by discrete conduit-continuum modeling[J]. Water Resources Research, 2018, 54(3): 1918-1933. doi: 10.1002/2017WR020658
    [32]
    杨杨, 赵良杰, 夏日元, 王莹. 珠江流域岩溶地下河分布特征与影响因素研究[J]. 中国岩溶, 2022, 41(4): 562-576.

    YANG Yang, ZHAO Liangjie, XIA Riyuan, WANG Ying. Distribution and influencing factors of karst underground rivers in the Pearl River Basin[J]. Carsologica Sinica, 2022, 41(4): 562-576.
    [33]
    四川省地质矿产局, 成都地质学院. 中华人民共和国区域地质调查报告(比例尺1∶ 50 000): H-48-62-D天全幅、H-48-62-B灵关幅[R]. 成都, 1993.
    [34]
    贺承广. 龙门山构造带中段新构造活动特征研究[D]. 北京: 中国地质科学院, 2012.

    HE Chengguang. Research on characteristics of neotectonics in the middle section of Longmenshan structural belt[D]. Beijing: Chinese Academy of Geological Sciences, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (11) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return