• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 43 Issue 4
Oct.  2024
Turn off MathJax
Article Contents
WANG Jia, LI Sheng, ZHENG Yanhong, PAN Wen, SUN Yan. Daily dynamics effects of microclimate of two underlying surfaces in rocky desertification areas[J]. CARSOLOGICA SINICA, 2024, 43(4): 810-821, 853. doi: 10.11932/karst2024y023
Citation: WANG Jia, LI Sheng, ZHENG Yanhong, PAN Wen, SUN Yan. Daily dynamics effects of microclimate of two underlying surfaces in rocky desertification areas[J]. CARSOLOGICA SINICA, 2024, 43(4): 810-821, 853. doi: 10.11932/karst2024y023

Daily dynamics effects of microclimate of two underlying surfaces in rocky desertification areas

doi: 10.11932/karst2024y023
  • Received Date: 2023-07-14
    Available Online: 2024-11-05
  • As an ecologically vulnerable area with the strongest karst development in the world, the karst area in Southwest China exceeds 540,000 km2. Long-term human activities and frequent extreme climate have accelerated soil erosion, causing large areas of bedrock to be exposed on the surface; consequently, a rocky desert landscape with severely degraded vegetation came into being. Under the influence of the hot and humid monsoon climate, carbonate rocks underwent dissolution, which formed various heterogeneous underlying surfaces such as earth flatland and stone surface. The local microclimate differences caused by different underlying surfaces play an important role in regional vegetation restoration and ecosystem reconstruction. Current research on environmental factors in rocky desertification areas mainly focuses on water, soil and other aspects, while there is still a lack of research on microclimate of underlying surfaces.Taking two typical underlying surfaces (earth flatland and bare land) as the research objects, this study aims to explore the microclimate effects of heterogeneous underlying surfaces in rocky desertification areas. A long-term quantitative comparison in daily dynamics of near-surface temperature and humidity of these two underlying surfaces were conducted through simulation experiments. In rocky desertification areas, earth flatland is composed of polygonal rock masses exposed on the surface and patches of soil distributed inside, while bare land is normal land with no exposed rocks and no vegetation coverage. This study area is located in Puding county, Anshun City, Guizhou Province, where karst is strongly developed. The karst landform accounts for 84.27% of the county area with 60.55% of rocky desertification. The county has humid monsoon climate on the north subtropical plateau, with an annual average temperature of 15.1 °C and an annual rainfall of 1,378.2 mm. The annual total solar radiation fluctuates from 85.71 to 458.81 MJ·m−2.Preliminary field surveys found that there were large parameter variations in rock mass shape and size, and orientation of earth flatland. In order to improve the reliability and accuracy of the observation results, this study adopted in-situ limestone and concrete pouring technology to conduct simulation construction based on the average parameters of 30 earth flatlands that have been investigated. There were three replicates for each of the two underlying surfaces. To carry out long-term monitoring of temperature and relative humidity, high-resolution iButton DS1923 temperature and humidity recorders were installed at different heights (2 cm, 40 cm and 80 cm) above the surface of the two underlying surfaces. All data analyses were performed in the R version 4.2.3. The functions of tapply and bartlett.test/var.test were used to test data normality and homogeneity of variances. If the data passed the test, one-way ANOVA would be used to conduct multiple comparisons of air temperature and humidity at different spatial heights. An independent sample t-test was used to compare the air temperature and humidity at the same spatial height on earth flatland and bare land. If the test failed, multiple sets of data would be applied for non-parametric testing and multiple comparisons through the kruskal.test function and PMCMRplus package. These two groups of data were applied for the wilcoxon rank sum test by the wilcox.test function.Daily dynamics of microclimate of bare land and earth flatland obviously differed on the spatial and temporal scales. When solar radiation was the strongest in summer, temperature at each spatial height of earth flatland was significantly higher than that of bare land (P<0.05), and the relative humidity was significantly lower than that of bare land (P<0.05), which led to warming and dehumidifying conditions. However, air temperature in the bottom space of earth flatland was significantly lower than that in bare land (P<0.05), and the relative humidity was significantly higher than that of bare land (P<0.05) from 10:00 to 16:00 in winter, which resulted in cooling and humidifying effects. The daily variation degree of microclimate in bare land and earth flatland was significantly different in response to different seasons. The daily temperature range of the upper layer of earth flatland was significantly higher than that of bare land (P<0.05) in summer, indicating that the earth flatland intensified the daily change of air temperature. However, the daily temperature and humidity range of the lower layer of the earth flatland was significantly lower than that of the bare land (P<0.05) in winter, showing that the earth flatland buffered the daily change of the microclimate.At present, bedrock-exposed areas of rocky desertification are under a more severe and changeable microclimate change background. Therefore, based on the differences in the microclimate effects of heterogeneous underlying surfaces, priority should be given to introduce early fast-growing karst plants to accelerate surface vegetation coverage and improve local microclimate conditions, which would play a positive role in buffering microclimate changes in rocky desertification areas and accelerating vegetation restoration.

     

  • loading
  • [1]
    Xiao Honglin, Weng Qihao. The impact of land use and land cover changes on land surface temperature in a karst area of China[J]. Journal of Environmental Management, 2007, 85(1): 245-257.
    [2]
    Opedal Øysteinh, Armbruster Wscott, Graae Bentej. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape[J]. Plant Ecology & Diversity, 2015, 8(3): 305-315.
    [3]
    鲍艳, 吕世华. 干旱、半干旱区陆—气相互作用的研究进展[J]. 中国沙漠, 2006, 26(3):454-460. doi: 10.3321/j.issn:1000-694X.2006.03.024

    BAO Yan, LYU Shihua. Review of land-atmosphere interaction research in arid and semi-arid regions[J]. Journal of Desert Research, 2006, 26(3): 454-460. doi: 10.3321/j.issn:1000-694X.2006.03.024
    [4]
    李宏宇, 符淙斌, 郭维栋, 马芳. 干旱区不同下垫面能量分配机理及对微气候反馈的研究[J]. 物理学报, 2015, 64(5):438-451. doi: 10.7498/aps.64.059201

    LI Hongyu, FU Congbin, GUO Weidong, MA Fang. Study of energy partitioning and its feedback on the microclimate over different surfaces in an arid zone[J]. Acta Physica Sinica, 2015, 64(5): 438-451. doi: 10.7498/aps.64.059201
    [5]
    Frenne Pieterde, Rodríguez-Sánchez Francisco, Coomes David Anthony, etc. Microclimate moderates plant responses to macroclimate warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18561-18565. doi: 10.1073/pnas.1311190110
    [6]
    Zellweger Florian, Frenne Pieter De, Lenoir Jonathan, etc. Forest microclimate dynamics drive plant responses to warming[J]. Science, 2020, 368: 772-775. doi: 10.1126/science.aba6880
    [7]
    王兰宁, 郑庆林, 宋青丽. 青藏高原中西部下垫面对东亚大气环流季节转换影响的数值模拟[J]. 高原气象, 2003, 22(2):179-184. doi: 10.3321/j.issn:1000-0534.2003.02.013

    WANG Lanning, ZHENG Qinglin, SONG Qingli. Numerical simulation of the influences of west-central Qinghai-Xizang Plateau on East Asia seasonal transition[J]. Plateau Meteorology, 2003, 22(2): 179-184. doi: 10.3321/j.issn:1000-0534.2003.02.013
    [8]
    李娟, 李跃清, 蒋兴文, 高笃鸣. 青藏高原东南部复杂地形区不同天气状况下陆气能量交换特征分析[J]. 大气科学, 2016, 40(4):777-791. doi: 10.3878/j.issn.1006-9895.1509.15197

    LI Juan, LI Yueqing, JIANG Xingwen, GAO Duming. Characteristics of land−atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(4): 777-791. doi: 10.3878/j.issn.1006-9895.1509.15197
    [9]
    刘方, 王世杰, 罗海波, 刘元生. 喀斯特森林生态系统的小生境及其土壤异质性[J]. 土壤学报, 2008, 45(6):1055-1062. doi: 10.3321/j.issn:0564-3929.2008.06.007

    LIU Fang, WANG Shijie, LUO Haibo, LIU Yuansheng. Micro-habitats in karst forest ecosystem and variability of soils[J]. Acta Pedologica Sinica, 2008, 45(6): 1055-1062. doi: 10.3321/j.issn:0564-3929.2008.06.007
    [10]
    沈有信, 赵志猛, 毕胜春, 赵高卷, 刘娟. 陆地系统中的露石及其生态作用[J]. 地球科学进展, 2018, 33(4):343-349. doi: 10.11867/j.issn.1001-8166.2018.04.0343

    SHEN Youxin, ZHAO Zhimeng, BI Shengchun, ZHAO Gaojuan, LIU Juan. Rock outcrop and its ecological function in terrestrial ecosystem[J]. Advances in Earth Science, 2018, 33(4): 343-349. doi: 10.11867/j.issn.1001-8166.2018.04.0343
    [11]
    徐红枫, 王妍, 苏倩, 黎舟, 贾玉洁. 基于Google Earth Engine的云南省典型岩溶地区30年石漠化演变与驱动因子分析[J]. 干旱区资源与环境, 2022, 36(5):94-101.

    XU Hongfeng, WANG Yan, SU Qian, LI Zhou, JIA Yujie. Evolution of rock desertification and driving factors in typical karst areas of Yunnan Province in the past 30 years based on Google Earth Engine[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 94-101.
    [12]
    李成芳, 王忠诚, 李振炜, 徐宪立. 西南喀斯特区土壤侵蚀研究进展[J]. 中国岩溶, 2022, 41(6):962-974. doi: 10.11932/karst20220608

    LI Chengfang, WANG Zhongcheng, LI Zhenwei, XU Xianli. Research progress of soil erosion in karst areas of Southwest China[J]. Carsologica Sinica, 2022, 41(6): 962-974. doi: 10.11932/karst20220608
    [13]
    容丽, 王世杰, 杜雪莲. 喀斯特低热河谷石漠化区环境梯度的小气候效应:以贵州花江峡谷区小流域为例[J]. 生态学杂志, 2006, 25,25(9):1038-1043. doi: 10.3321/j.issn:1000-4890.2006.09.007

    RONG Li, WANG Shijie, DU Xuelian. Microclimatic effects along environmental gradient in karst rocky desertified area: A case study of a small catchment in Huajiang gorge of Guizhou Province[J]. Chinese Journal of Ecology, 2006, 25(9): 1038-1043. doi: 10.3321/j.issn:1000-4890.2006.09.007
    [14]
    颜萍, 刘子琦, 肖杰, 胡晚枚, 陈航. 喀斯特石漠化治理区不同土地利用方式的小气候效应[J]. 中国岩溶, 2016, 35(5):557-565.

    YAN Ping, LIU Ziqi, XIAO Jie, HU Wanmei, CHEN Hang. Microclimate effects of different land use types in demonstration areas for combating karst rocky desertification[J]. Carsologica Sinica, 2016, 35(5): 557-565.
    [15]
    Liu Chunni, Huang Yang, Wu Feng, Liu Wenjing, Ning Yiqiu, Huang Zhenrong, Tang Shaoqing, Liang Yu. Plant adaptability in karst regions[J]. Journal of Plant Research, 2021, 134: 889-906. doi: 10.1007/s10265-021-01330-3
    [16]
    罗美, 周运超, 唐凤华. 不同植被下碳酸盐岩石发育形成土壤属性研究[J]. 中国岩溶, 2023, 42(2):277-289. doi: 10.11932/karst2022y17

    LUO Mei, ZHOU Yunchao, TANG Fenghua. Soil properties of carbonate rocks under different vegetation types[J]. Carsologica Sinica, 2023, 42(2): 277-289. doi: 10.11932/karst2022y17
    [17]
    Cai Lulu, Xiong Kangning, Liu Ziqi, Li Yuan, Fan Bo. Seasonal variations of plant water use in the karst desertification control[J]. Science of the Total Environment, 2023, 885: 163778. doi: 10.1016/j.scitotenv.2023.163778
    [18]
    Bátori Zoltán, Vojtkó András, Farkas Tünde, Szabó Anna, Havadtői Kkrisztina, Vojtkó Annae, Tölgyesi Csaba, Cseh Viktória, Erdős László, Maák Istvánelek, Keppel Gunnar. Large-and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia[J]. Annals of Botany, 2017, 119(2): 301-309. doi: 10.1093/aob/mcw233
    [19]
    李生, 薛亮, 王佳, 任华东, 姚小华. 石漠化地区裸岩表面温度和空气温湿度动态变化[J]. 生态学杂志, 2019, 38(2):436-442.

    LI Sheng, XUE Liang, WANG Jia, REN Huadong, YAO Xiaohua. The dynamics of bare rock surface air temperature and relative humidity in karst rocky desertification area[J]. Chinese Journal of Ecology, 2019, 38(2): 436-442.
    [20]
    Li Sheng, Birk Steffen, Xue Liang, Ren Huadong, Chang Jun, Yao Xiaohua. Seasonal changes in the soil moisture distribution around bare rock outcrops within a karst rocky desertification area (Fuyuan county, Yunnan Province, China)[J]. Environmental Earth Sciences, 2016, 75(23): 1-10.
    [21]
    Shen Youxin, Wang Dianjie, Chen Qiaoqiao, Tang Yingyin, Chen Fajun. Large heterogeneity of water and nutrient supply derived from runoff of nearby rock outcrops in karst ecosystems in SW China[J]. Catena, 2019, 172: 125-131. doi: 10.1016/j.catena.2018.08.020
    [22]
    俞国松, 王世杰, 容丽. 茂兰喀斯特森林演替阶段不同小生境的小气候特征[J]. 地球与环境, 2011, 39(4):469-477.

    YU Guosong, WANG Shijie, RONG Li. Microclimate characteristics of different microhabitats in successional stages of Maolan karst forest[J]. Earth and Environment, 2011, 39(4): 469-477.
    [23]
    李安定, 卢永飞, 韦小丽, 喻理飞. 花江喀斯特峡谷地区不同小生境土壤水分的动态研究[J]. 中国岩溶, 2008, 27(1):56-62.

    LI Anding, LU Yongfei, WEI Xiaoli, YU Lifei. Studies on the regime of soil moisture under different microhabitats in Huajiang karst valley[J]. Carsologica Sinica, 2008, 27(1): 56-62.
    [24]
    俞筱押, 李玉辉. 滇石林喀斯特植物群落不同演替阶段的溶痕生境中木本植物的更新特征[J]. 植物生态学报, 2010, 34(8):889-897.

    YU Xiaoya, LI Yuhui. Characteristics of woody plant regeneration in karren-habitats successional plant communities in Yunnan Shilin karst area of China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 889-897.
    [25]
    Zhou Yunchao, Wang Shijie, Lu Hongmei, Xie Liping, Xiao Dean. Forest soil heterogeneity and soil sampling protocols on limestone outcrops: Example from SW China[J]. Acta Carsologica, 2010, 39: 115-122.
    [26]
    周淑贞, 张如一, 张超. 气象学与气候学[M]. 北京:高等教育出版社, 1997.
    [27]
    胡隐樵, 孙菽芬, 郑元润, 张强, 傅培健. 稀疏植被下垫面与大气相互作用研究进展[J]. 高原气象, 2004, 23(3):281-296.

    HU Yinqiao, SUN Shufen, ZHENG Yuanrun, ZHANG Qiang, FU Peijian. Review of study on interaction between underlying surface with sparse vegetation and atmosphere[J]. Plateau Meteorology, 2004, 23(3): 281-296.
    [28]
    彭大为, 周秋文, 谢雪梅, 韦小茶, 唐欣. 下垫面因素对喀斯特地区水分利用效率的影响[J]. 地理科学进展, 2021, 40(12):2086-2100. doi: 10.18306/j.issn.1007-6301.2021.12.dlkxjz202112009

    PENG Dawei, ZHOU Qiuwen, XIE Xuemei, WEI Xiaocha, TANG Xin. Effect of underlying surface factors on water use efficiency in the karst area[J]. Progress in Geography, 2021, 40(12): 2086-2100. doi: 10.18306/j.issn.1007-6301.2021.12.dlkxjz202112009
    [29]
    张邦琨, 韦小丽, 曾信波. 喀斯特地貌森林不同小生境的小气候特征研究[J]. 贵州气象, 1995, 19(4):16-19.
    [30]
    杜雪莲, 王世杰. 喀斯特石漠化区小生境特征研究:以贵州清镇王家寨小流域为例[J]. 地球与环境, 2010, 38(3):255-261.

    DU Xuelian, WANG Shijie. Micro-habitat characteristics in the karst desertification area: A case study of the Wangjiazhai catchment in Guizhou Province[J]. Earth and Environment, 2010, 38(3): 255-261.
    [31]
    熊华, 于飞. 喀斯特中度石漠化地区不同生境小气候变化特征[J]. 贵州农业科学, 2013, 41(8):103-105, 108. doi: 10.3969/j.issn.1001-3601.2013.08.027

    XIONG Hua, YU Fei. Characteristics of microclimate change in different habitats of karst moderate rocky desertification area[J]. Guizhou Agricultural Sciences, 2013, 41(8): 103-105, 108. doi: 10.3969/j.issn.1001-3601.2013.08.027
    [32]
    陈朝军, 袁道先, 程海, YU Tsailuen, SHEN Chuanchou, EDWARDS R Lawrence, 吴尧, 肖思雅, 张键, 王涛, 黄冉, 刘子琦, 李延勇, 李俊云. 人类活动和气候变化触发了中国西南石漠化的扩张[J]. 中国科学:地球科学, 2021, 51(11):1950-1963.

    CHEN Chaojun, YUAN Daoxian, CHENG Hai, YU Tsailuen, SHEN Chuanchou, EDWARDS R Lawrence, WU Yao, XIAO Siya, ZHANG Jian, WANG Tao, HUANG Ran, LIU Ziqi, LI Yanyong, LI Junyun. Human activity and climate change triggered the expansion of rocky desertification in the karst areas of Southwestern China[J]. Scientia Sinica (Terrae), 2021, 51(11): 1950-1963.
    [33]
    Xu Lingling, Qian Shuan, Zhao Xiulan, Hao Yan. Spatio-temporal variation of vegetation ecological quality and its response to climate change in rocky desertification areas in Southwest China during 2000−2020[J]. Journal of Resources and Ecology, 2022, 13(1): 27-33.
    [34]
    张艳林, 程国栋, 李新, 韩旭军, 常晓丽. 山区太阳辐射对水热过程影响的敏感性分析[J]. 冰川冻土, 2012, 34(3):650-659.

    ZHANG Yanlin, CHENG Guodong, LI Xin, HAN Xujun, CHANG Xiaoli. A sensitivity analysis of effect of solar radiation on heat and water process in mountainous regions[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 650-659.
    [35]
    王尚彦, 况顺达, 戴传固, 王明章, 刘家仁. 白云岩和石灰岩山区石漠化速度差异原因分析[J]. 贵州地质, 2009, 26(1):49-51. doi: 10.3969/j.issn.1000-5943.2009.01.010

    WANG Shangyan, KUANG Shunda, DAI Chuangu, WANG Mingzhang, LIU Jiaren. Analyses on the reason of rocky desertification speed difference of dolomite and limestone in mountain area[J]. Guizhou Geology, 2009, 26(1): 49-51. doi: 10.3969/j.issn.1000-5943.2009.01.010
    [36]
    Wouters Hendrik, Keune Jessica, Petrova Irinay, Heerwaarden Chielcvan, Teuling Adriaanj, Pal Jeremys, Arellano Jordivilà-gueraude, Miralles Diegog. Soil drought can mitigate deadly heat stress thanks to a reduction of air humidity[J]. Science Advances, 2022, 8: eabe6653.
    [37]
    Jiang Kang, Pan Zhihua, Pan Feifei, Teuling Adriaanj, Han Guolin, An Pingli, Chen Xiao, Wang Jialin, Song Yu, Cheng Lu, Zhang Ziyuan, Huang Na, Ma Shangqian, Gao Riping, Zhang Zhenzhen, Men Jingyu, Lv Xiaoqin, Dong Zhiqiang. Combined influence of soil moisture and atmospheric humidity on land surface temperature under different climatic background[J]. iScience, 2023, 26(6): 106837. doi: 10.1016/j.isci.2023.106837
    [38]
    Qin Nianxiu, Wang Junneng, Yang Guishan, Chen Xi, Liang Haoyuan, Zhang Jianbin. Spatial and temporal variations of extreme precipitation and temperature events for the Southwest China in 1960−2009[J]. Geoenvironmental Disasters, 2015, 2: 4. doi: 10.1186/s40677-015-0014-9
    [39]
    IPCC. Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge University Press, 2023.
    [40]
    Fanourakis Dimitrios, Bouranis Dimitrisl, Giday Habtamu, Carvalho Dáliara. Improving stomatal functioning at elevated growth air humidity: A review[J]. Journal of Plant Physiology, 2016, 207: 51-60. doi: 10.1016/j.jplph.2016.10.003
    [41]
    朱大运, 熊康宁. 气候因子对我国喀斯特石漠化治理影响研究综述[J]. 江苏农业科学, 2018, 46(7):19-23.

    ZHU Dayun, XIONG Kangning. Influence of climatic factors on treatment of stony desertification in China's karst area: A review[J]. Jiangsu Agricultural Sciences, 2018, 46(7): 19-23.
    [42]
    曹建华, 袁道先, 杨慧, 黄芬, 朱同彬, 梁建宏, 周孟霞, 罗劬侃, 吴夏. 岩溶生态系统中的植物[J]. 中国岩溶, 2022, 41(3):365-377. doi: 10.11932/karst20220304

    CAO Jianhua, YUAN Daoxian, YANG Hui, HUANG Fen, ZHU Tongbin, LIANG Jianhong, ZHOU Mengxia, LUO Qukan, WU Xia. Karst ecosystem and its plants[J]. Carsologica Sinica, 2022, 41(3): 365-377. doi: 10.11932/karst20220304
    [43]
    李建鸿, 蒲俊兵, 张陶, 王赛男, 熊小锋, 霍伟杰. 小降雨事件对土壤水分及植物水势空间差异性的影响[J]. 中国岩溶, 2019, 38(2):233-242.

    LI Jianhong, PU Junbing, ZHANG Tao, WANG Sainan, XIONG Xiaofeng, HUO Weijie. Effects of light rainfall events on spatial variation of soil moisture and leaf water potential of apple tree (Malus pumila Mill.) in a karst graben basin, Yunnan Province[J]. Carsologica Sinica, 2019, 38(2): 233-242.
    [44]
    段华超, 郑鑫华, 李世民, 李燕燕, 叶澜, 井卉竹, 罗润文, 唐永, 董琼. 云南石漠化地区植被恢复模式及优化建议[J]. 中国岩溶, 2024, 43(1):137-146. doi: 10.11932/karst2021y13

    DUAN Huachao, ZHENG Xinhua, LI Shimin, LI Yanyan, YE Lan, JING Huizhu, LUO Runwen, TANG Yong, DONG Qiong. Vegetation restoration model and suggestions on its optimization in rocky desertification areas of Yunnan Province[J]. Carsologica Sinica, 2024, 43(1): 137-146. doi: 10.11932/karst2021y13
    [45]
    宁静, 杨磊, 曹建华, 李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点[J]. 中国岩溶, 2023, 42(2):321-336. doi: 10.11932/karst2022y25

    NING Jing, YANG Lei, CAO Jianhua, LI Liang. Bibliometric analysis of the current research focus on vegetation restoration in karst areas[J]. Carsologica Sinica, 2023, 42(2): 321-336. doi: 10.11932/karst2022y25
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return