[1] |
Schulz M, Paul A, Timmermann A. Relaxation oscillators in concert: A framework for climate change at millennial timescales during the late Pleistocene[J]. Geophysical Research Letters, 2002, 29(24): 2193-2197.
|
[2] |
Sima A, Paul A, Schulz M. The Younger Dryas—an intrinsic feature of late pleistocene climate change at millennial timescales[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 741-750.
|
[3] |
陈仕涛, 汪永进, 孔兴功, 刘殿兵, Edwards L R. 倒数第三次冰消期亚洲季风气候可能的类Younger Dryas事件[J]. 中国科学D辑:地球科学, 2006(5):445-452.
|
[4] |
Cheng H, Edwards R L, Broecker W S, Denton G H, Kong X G, Wang Y J, Zhang R, Wang X F. Ice age terminations[J]. Science, 2009, 326(5950): 248-252. doi: 10.1126/science.1177840
|
[5] |
Duan W H, Cheng H, Tan M, Ma Z B, Chen S T, Wang L S, Wang X F, Cui L L. Structural similarity between Termination III and I[J]. Quaternary Science Reviews, 2022(296): 0277-3791.
|
[6] |
赵彬. MIS11阶段亚洲夏季风演化的高分辨率落水洞记录[D]. 南京:南京师范大学, 2019.
|
[7] |
Berger A L, Loutre M F. Climate 400,000 years ago, a key to the future?[A]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington, D C: American Geophysical Union, 2003: 17-26.
|
[8] |
刘殿兵. 新仙女木(YD)事件区域特征及动力机制研究新进展[J]. 地质论评, 2012, 58(2):341-349. doi: 10.3969/j.issn.0371-5736.2012.02.016
|
[9] |
王建力, 何潇, 王昕亚, 张美良, 林玉石. 重庆金佛山石笋的同位素年龄和古气候信息[J]. 中国岩溶, 2005, 24(4):265-269. doi: 10.3969/j.issn.1001-4810.2005.04.002
|
[10] |
张任, 朱学稳, 韩道山, 张远海, 房峰保. 重庆市南川金佛山岩溶洞穴发育特征初析[J]. 中国岩溶, 1998, 17(3):196-211.
|
[11] |
Cheng H, Edwards R L, Shen C C, Polyak V J, Asmerom Y, Woodhead J, Hellstrom J, Wang Y J, Kong X G, Spötl C, Wang X F, Alexander Jr E C. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371-372(1): 82-91.
|
[12] |
李辰丝. 重庆地区精确定年的MIS11时期石笋记录研究[D]. 重庆:西南大学, 2015.
|
[13] |
Jaffey A H, Flynn K F, Glendenin L E, Bentley W C, Essling A M. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889-1906.
|
[14] |
Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S T, Kelly M, kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646.
|
[15] |
Dorale J A, Liu Z H. Limitations of hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication[J]. Journal of Cave and Karst Studies, 2009, 71(1): 73-80.
|
[16] |
Cheng H, Sinha A, Wang X F, Cruz F W, Edwards R L. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1045-1062. doi: 10.1007/s00382-012-1363-7
|
[17] |
覃嘉铭, 林玉石, 张美良, 王华, 冯玉梅, 涂林玲. 末次冰期东亚季风气候的变迁:贵州都匀七星洞石笋的δ18O记录[J]. 中国岩溶, 2003, 22(3):167-173.
|
[18] |
Liu Z Y, Wen X Y, Brady E C. Chinese cave records and the East Asia summer monsoon[J]. Quaternary Science Reviews, 2014, 83(1): 115-128.
|
[19] |
Zhang W H, Wu J Y, Wang Y, Wang Y J, Cheng H, Kong X G, Duan F C. A detailed East Asian monsoon history surrounding the 'Mystery Interval' derived from three Chinese speleothem records[J]. Quaternary Research, 2014, 82(1): 154-163. doi: 10.1016/j.yqres.2014.01.010
|
[20] |
Porter S, Zhisheng A. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375: 305-308. doi: 10.1038/375305a0
|
[21] |
Rohling E J, Braun K, Grant K, Kucera M, Roberts A P, Siddall M, Trommer G. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories[J]. Earth and Planetary Science Letters, 2010, 291(1-4): 96-105.
|
[22] |
Laskar J, Robutel P, Joutel F, Gastineau M, Correia A C M, Levrard B. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy and Astrophysics, 2004, 428(1): 261-285. doi: 10.1051/0004-6361:20041335
|
[23] |
Kandiano E S, Meer M, Schouten S, Fahl Kirsten, Sinninghe Damsté J S, Bauch H A. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS11[J]. Scientific Reports, 2017, 7(1): 46192.
|
[24] |
Barker S, Chen J, Gong X, Jonkers L, Knorr G, Thornalley D. Icebergs not the trigger for North Atlantic cold events[J]. Nature Geoscience, 2015, 520: 333-336.
|
[25] |
Kandiano E S, Bauch H A, Fahl K, Helmke J P, Röhl U, Pérez Folgado M, Cacho I. The meridional temperature gradient in the eastern North Atlantic during MIS11 and its link to the ocean–atmosphere system[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 333-334: 24-39.
|
[26] |
Stein R, Hefter J, Grützner J, Voelker A, Naafs B D A. Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS16–9)[J]. Paleoceanography, 2009, 24(2): 2203.
|
[27] |
McManus J F, Oppo D W, Cullen J L, Healey S L. Marine isotope stage 11 (MIS 11): Analog for Holocene and future climate?[A]//Droxler A W, Poore R Z, Burckle L H. Earth's Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. Washington D C: American Geophysical Union, 2003: 69-85.
|
[28] |
Prokopenko A A, Bezrukova E V, Khursevich G K, Solotchina E P, Kuzmin M I, Tarasov P E. Climate in continental interior Asia during the longest interglacial of the past 500,000 years: The new MIS11 records for Lake Baikal, SE Siberia[J]. Climate of the Past, 2010, 6(1): 31-48. doi: 10.5194/cp-6-31-2010
|
[29] |
Oliveira D, Desprat S, Rodrigues T, Naughton F, Hodell D, Trigo R, Goni M. The complexity of millennial-scale variability in Southwestern Europe during MIS11[J]. Quaternary Research, 2016, 86(3): 373-387. doi: 10.1016/j.yqres.2016.09.002
|
[30] |
Tzedakis P C, Pälike H, Roucoux K H, de Abreu L. Atmospheric methane, Southern European vegetation and low-mid latitude links on orbital and millennial timescales[J]. Earth and Planetary Science Letters, 2009, 277(3-4): 307-317.
|
[31] |
Dickson A J, Beer C, Dempsey C J, Dempsey C, Maslin M A, Bendle J A, McClymont E L, Pancost R D. Oceanic forcing of the Marine Isotope Stage 11 interglacial[J]. Nature Geoscience, 2009, 2(6): 428–433.
|
[32] |
张涛涛, 李廷勇, 韩立银, 程海, 李俊云, 赵鑫, 周菁俐. MIS 5a/5b时期亚洲夏季风变化的高分辨率石笋记录[J]. 中国岩溶, 2017, 36(2):162-170. doi: 10.11932/karst20170202
|
[33] |
John M D, Yuet F L, Christelle N, Dirk E, Henning A B, Adina P, Benoit T. Freshening, stratification and deep-water formation in the Nordic Seas during Marine Isotope Stage 11[J]. Quaternary Science Reviews, 2021, 272: 107231.
|
[34] |
张浣荻, 郝青振. 深海和冰芯证据指示氧同位素阶段MIS 11~10时期北极冰盖增长滞后[J]. 第四纪研究, 2019, 39(3):786-788. doi: 10.11928/j.issn.1001-7410.2019.03.23
|
[35] |
Galaasen E V, Ninnemann U S, Kessler A, Irvali N, Rosenthal Y, Tjiputra J, Bouttes N, Roche D M, Kleiven H F, Hodell D A. Interglacial instability of North Atlantic deep water ventilation[J]. Science, 2020, 367(6485): 1485-1489. doi: 10.1126/science.aay6381
|
[36] |
Voelker A H L, Rodrigues T, Billups K, Oppo D, McManus J, Stein R, Hefter J, Grimalt J O. Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes (MIS9–14) and their implications for the thermohaline circulation[J]. Climate of the Past, 2010, 6(4): 531-552. doi: 10.5194/cp-6-531-2010
|
[37] |
Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling[J]. Geophysical Research Letters, 2006, 33(1): 1-4.
|
[38] |
张日萍. 重庆金佛洞石笋记录的MIS11内部精细结构及其与全新世对比研究[D]. 重庆:西南大学, 2022.
|
[39] |
Wang X F, Auler A S, Edwards R, Cheng H, Ito E, Wang Y J, Kong X G, Solheid M. Millennial-scale precipitation changes in Southern Brazil over the past 90,000 years[J]. Geophysical Research Letters, 2007, 34(23): 135-147.
|
[40] |
Wang Y J, Cheng H, Edwards R L, An Z S, Wu J Y, Shen C C, Dorale J A. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu cave, China[J]. Science, 2001, 294(29): 2345-2348.
|
[41] |
Cheng H, Zhang H W, Spötl C, Baker J, Sinha A, Li H Y, Bartolomé M, Moreno A, Kathayat G, Zhao J Y, Dong X Y, Li Y W, Ning Y F, Jia X, Zong B Y, Brahim Y A, Pérez Mejiás C, Cai Y J, Novello V F, Cruz F W, Severinghaus J P, An Z S, Edwards R L. Timing and structure of the Younger Dryas event and its underlying climate dynamics[J]. Proceedings of the National Academy of Sciences, 2020, 117(38): 1-10.
|
[42] |
EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429: 623-628. doi: 10.1038/nature02599
|
[43] |
Stuiver M, Grootes P M. GISP2 oxygen isotope ratio[J]. Quaternary Research, 2000, 53(3): 277-284. doi: 10.1006/qres.2000.2127
|
[44] |
Haug G H, Hughen K A, Sigman D M, Peterson L C, Rohl U. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725
|
[45] |
Hughen K A, Overpeck J T, Peterson L C, Trumbore S E. Rapid climate changes in the tropical Atlantic region during the last deglaciation[J]. Nature, 1996, 380(7): 51-54.
|
[46] |
Hughen K A, Southon J R, Lehman S J, Overpeck J T. Synchronous radiocarbon and climate shifts during the last deglaciation[J]. Science, 2000, 290(5498): 1951-1954.
|
[47] |
Cheng H, Li H Y, Sha L J, Sinha A, Shi Z G, Yin Q Z, Lu Z Y, Zhao D B, Cai Y J, Hu Y Y, Hao Q Z, Tian J, Kathayat G, Dong X Y, Zhao J Y, Zhang H W. Milankovitch theory and monsoon[J]. The Innovation, 2022, 3(6): 100338.
|
[48] |
Böhm E, Lippold J, Gutjahr M, Frank M, Blaser P, Antz B, Fohlmeister J, Frank N, Andersen M B, Deininger M. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7532): 73-76. doi: 10.1038/nature14059
|
[49] |
Jouzel J, Masson Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola J M, Chappellaz J, Fischer H, Gallet J C, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen J P, Stenni B, Stocker T F, Tison J L, Werner M, Wolff E W. Orbital and millennial Antarctic climate variability over the past 800,000 years[J]. Science, 2007, 317(5839): 793-796. doi: 10.1126/science.1141038
|
[50] |
Lisiecki L E, Raymo M E. A Pliocene–Pleistocene stack of 57 globally-distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1003.
|
[51] |
Yin Q Z, Berger A. Interglacial analogues of the Holocene and its natural near future[J]. Quaternary Science Reviews, 2015, 120: 28-46.
|
[52] |
Peter H, Carl W. Obliquity pacing of the late Pleistocene glacial terminations[J]. Nature, 2005, 434(7032): 1476-4687.
|
[53] |
Masson Delmotte V, Dreyfus G, Braconnot P, Johnsen S, Jouzel J, Kageyama M, Landais A, Loutre M F, Nouet J, Parrenin F, Raynaud D, Stenni B, Tuenter E. Past temperature reconstructions from deep ice cores: Relevance for future climate change[J]. Climate of the Past, 2006, 2(2): 145-165.
|
[54] |
Yin Q Z, Wu Z P, Berger A, Goosse H, Hodell D. Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials[J]. Science, 2021, 373(6558): 1035-1040.
|