• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 43 Issue 4
Oct.  2024
Turn off MathJax
Article Contents
SUN Tingting, YANG Yan, JIANG Xiuyang, LUO Zhenyu, TANG Yueer. Variation characteristics of stable hydrogen and oxygen isotopes in precipitation of Longtan trough valley and Maoba syncline in Youyang, Chongqing[J]. CARSOLOGICA SINICA, 2024, 43(4): 796-809. doi: 10.11932/karst2024y013
Citation: SUN Tingting, YANG Yan, JIANG Xiuyang, LUO Zhenyu, TANG Yueer. Variation characteristics of stable hydrogen and oxygen isotopes in precipitation of Longtan trough valley and Maoba syncline in Youyang, Chongqing[J]. CARSOLOGICA SINICA, 2024, 43(4): 796-809. doi: 10.11932/karst2024y013

Variation characteristics of stable hydrogen and oxygen isotopes in precipitation of Longtan trough valley and Maoba syncline in Youyang, Chongqing

doi: 10.11932/karst2024y013
  • Received Date: 2023-09-11
  • Accepted Date: 2024-01-09
  • Rev Recd Date: 2023-11-16
  • Available Online: 2024-11-05
  • This study aims to explore the characteristics and influencing factors of δ18O and δD in precipitation in two adjacent topographic areas of Longtan trough valley and Maoba syncline in Wuling mountain, southeastern Chongqing. Based on the sampling data about δ18O and δD in precipitation of Maoba syncline (altitude of 1,140 m) and Longtan trough valley (altitude of 330 m) in Youyang county of Chongqing in two hydrological years from June 2020 to May 2022, the meteoric water lines of the two studies areas were established, and the variation characteristics and influencing factors of hydrogen and oxygen stable isotopes in precipitation in these areas were also analyzed. The results show as follows. (1) The slopes and intercepts of meteoric water lines in Longtan trough valley and Maoba syncline exceeded those of the global meteoric water lines. The values of δ18O in precipitation in these two study areas show a significant effect of precipitation, while the influence of temperature effect is relatively weak. (2) The slope and intercept of the meteoric water line in Longtan trough valley were smaller than those in the Maoba syncline. The difference between the meteoric water lines in these two study areas was mainly controlled by the temperature and evaporation conditions during water vapor condensation. (3) The average values of δ18O and δD in precipitation in Longtan trough valley were more positive than those in Maoba syncline. The results of d-excess showed that there was a weak sub-cloud secondary evaporation of δ18O and δD in Longtan trough valley. The values of δ18O and δD in precipitation in Longtan trough valley and Maoba syncline exhibited significant seasonal changes, with negative values during the rainy season (May to October) and positive values during the dry season (November to the following April). (3) The values of δ18O in precipitation in Longtan trough valley and Maoba syncline showed a significant precipitation effect, while the influence of temperature effect is weak. During the same precipitation event, the values of δ18O in precipitation in Longtan trough valley were generally more positive than those in Maoba syncline, indicating that δ18O values in precipitation in Longtan trough valley and Maoba syncline were influenced by elevation effects. (4) The interannual variations of δ18O in precipitation in Longtan trough valley and Maoba syncline were mainly affected by the change of the proportion of water vapor transported from Indian Ocean. In the summer of 2020, the proportion of water vapor from the Indian Ocean to the study areas reached 76%, with negative δ18O in precipitation. However, the proportion decreased to 52% in the summer of 2021, with positive δ18O in precipitation. This study is of great significance for the understanding of the water cycle process in the karst trough valley areas of Southwest China and for future studies on the eco-hydrological process of Longtan trough valley and Maoba syncline.

     

  • loading
  • [1]
    宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江资源与环境, 2015, 24(11):1860-1869.

    SONG Chunlin, SUN Xiangyang, WANG Genxu. A study on precipitation stable isotopes characteristics and vapor sources of the subalpine Gongga mountain, China[J]. Resources and Environment in the Yangtze Basin, 2015, 24(11): 1860-1869.
    [2]
    Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
    [3]
    陈琦, 郭锦荣, 李超, 王翰琨, 吴春生, 邓文平, 刘苑秋, 叶清, 李晓东. 庐山地区大气降水稳定同位素变化特征[J]. 自然资源学报, 2019, 34(6):1306-1316. doi: 10.31497/zrzyxb.20190615

    CHEN Qi, GUO Jinrong, LI Chao, WANG Hankun, WU Chunsheng, DENG Wenping, LIU Yuanqiu, YE Qing, LI Xiaodong. Variation characteristics of stable isotope in precipitation in Mount Lu area[J]. Journal of Natural Resources, 2019, 34(6): 1306-1316. doi: 10.31497/zrzyxb.20190615
    [4]
    Rozanski K, Araguas Araguas L, Gonfiantini R. Isotopic patterns in modern global precipitation[A]//Swart P K, Lohmann K C, Mckenzie J, et al. Climate Change in Continental Isotopic Records. Washington DC: American Geophysical Union, 1993: 1-36.
    [5]
    Zhang M J, Wang S J. A review of precipitation isotope studies in China: Basic pattern and hydrological process[J]. Journal of Geographical Sciences, 2016, 26(7): 921-938. doi: 10.1007/s11442-016-1307-y
    [6]
    折远洋, 王圣杰, 王鹏, 雷世军, 杨磊. 西秦岭地区大气降水氢氧稳定同位素特征[J]. 地球与环境, 2023, 51(2):143-152.

    SHE Yuanyang, WANG Shengjie, WANG Peng, LEI Shijun, YANG Lei. Stable hydrogen and oxygen isotopes in precipitation in the western Qinling mountains[J]. Earth and Environment, 2023, 51(2): 143-152.
    [7]
    田立德, 姚檀栋, 孙维贞, M Stievenard, J Jouzel. 青藏高原南北降水中δD和δ18O关系及水汽循环[J]. 中国科学(D辑), 2001, 31(3):214-220.
    [8]
    朱磊, 范弢, 郭欢. 西南地区大气降水中氢氧稳定同位素特征与水汽来源[J]. 云南地理环境研究, 2014, 26(5):61-67. doi: 10.3969/j.issn.1001-7852.2014.05.010

    ZHU Lei, FAN Tao, GUO Huan. Sources and stable isotope characteristics of precipitation in southwest of China[J]. Yunnan Geographic Environment Research, 2014, 26(5): 61-67. doi: 10.3969/j.issn.1001-7852.2014.05.010
    [9]
    张贵玲, 角媛梅, 何礼平, 刘 歆, 刘澄静, 闫晓景, 王梅. 中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土, 2015, 37(4):1094-1103.

    ZHANG Guiling, JIAO Yuanmei, HE Liping, LIU Xin, LIU Chengjing, YAN Xiaojing, WANG Mei. Hydrogen and oxygen isotopes in precipitation in Southwest China: Progress and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(4): 1094-1103.
    [10]
    章新平, 关华德, 孙治安, 孙广禄, 张新主, 吴华武. 云南降水中稳定同位素变化的模拟和比较[J]. 地理科学, 2012, 32(1):121-128.

    ZHANG Xinping, GUAN Huade, SUN Zhian, SUN Guanglu, ZHANG Xinzhu, WU Huawu. Simulations of stable isotopic variations in precipitation and comparison with measured values in Yunnan Province, China[J]. Scientia Geographica Sinica, 2012, 32(1): 121-128.
    [11]
    章新平, 刘晶淼, 孙维贞, 黄一民, 张剑明. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学D辑:地球科学, 2006, 36(9):850-859.
    [12]
    Zhou J L, Li T Y. A tentative study of the relationship between annual δ18O & δD variations of precipitation and atmospheric circulations: A case from Southwest China[J]. Quaternary International, 2017, 479: 117-127.
    [13]
    庞洪喜, 何元庆, 卢爱刚, 赵井东, 宁宝英, 院玲玲, 宋波. 天气尺度下丽江季风降水中δ18O变化[J]. 科学通报, 2006, 51(10):1218-1224. doi: 10.3321/j.issn:0023-074X.2006.10.014
    [14]
    朱秀勤, 范弢, 官威. 昆明大气降水稳定同位素分析[J]. 云南地理环境研究, 2013, 25(5):90-95.

    ZHU Xiuqin, FAN Tao, GUAN Wei. The analysls of stable isotopes of precipitation in Kunming[J]. Yunnan Geographic Environment Research, 2013, 25(5): 90-95.
    [15]
    王涛, 邵晓华, 张娴. 四川盆地与关中盆地春夏季大气降水氧同位素特征及意义[J]. 南京信息工程大学学报(自然科学版), 2013, 5(3):209-215.

    WANG Tao, SHAO Xiaohua, ZHANG Xian. Regional characteristics and implications of spring and summer precipitation δ18O values in Sichuan and Guanzhong basin[J]. Journal of Nanjing University of Information Science & Technology: Natural Science Edition, 2013, 5(3): 209-215.
    [16]
    李维杰, 王建力, 王家录. 西南地区不同地形降水稳定同位素特征及其水汽来源[J]. 长江流域资源与环境, 2018, 27(5):1132-1142.

    LI Weijie, WANG Jianli, WANG Jialu. Characteristics of the stable isotopes in precipitation and the source of water vapor in different terrain in the southwest region[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5): 1132-1142.
    [17]
    张君, 陈洪松, 黄荣. 桂西北喀斯特小流域降雨稳定氢氧同位素组成及影响因素[J]. 生态学报, 2022, 42(1):236-245.

    ZHANG Jun, CHEN Hongsong, HUANG Rong. Composition of stable hydrogen and oxygen isotopic of precipitation and its influencing factors in karst area, northwest Guangxi of China[J]. Acta Ecologica Sinica, 2022, 42(1): 236-245.
    [18]
    李廷勇, 李红春, 沈川洲. 2006~2008年重庆大气降水δD和δ18O特征初步分析[J]. 水科学进展, 2010, 21(6):757-764.

    LI Tingyong, LI Hongchuan, SHEN Chuanzhou. Study on the δD and δ18O characteristics of meteoric precipitation during 2006–2008 in Chongqing, China[J]. Advances in Water Scicence, 2010, 21(6): 757-764.
    [19]
    刘东生, 陈正明, 罗可文. 桂林地区大气降水的氢氧同位素研究[J]. 中国岩溶, 1987, 6(3):225-231.

    LIU Dongsheng, CHEN Zhengming, LUO Kewen. A study on hydrogen and oxygen isotopic composition of the precipitation in Guilin area[J]. Carsologica Sinica, 1987, 6(3): 225-231.
    [20]
    Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133: 1702-1703. doi: 10.1126/science.133.3465.1702
    [21]
    郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983(13):801-806.
    [22]
    章新平, 孙维贞, 刘晶淼. 西南水汽通道上昆明站降水中的稳定同位素[J]. 长江流域资源与环境, 2005, 14(5):665-669.

    ZHANG Xinping, SUN Weizhen, LIU Jingmiao. Stable isotopes in precipitation in the vapor transport path in Kunming of Southwest China[J]. Resources and Environment in the Yangtze Basin, 2005, 14(5): 665-669.
    [23]
    周思捷, 孙从建, 陈伟, 张鑫. 黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J]. 地理学报, 2022, 77(7):1745-1761.

    ZHOU Sijie, SUN Congjian, CHEN Wei, ZHANG Xin. Precipitation isotope characteristics and water vapor sources in summer in eastern Loess Plateau[J]. Acta Geographica Sinica, 2022, 77(7): 1745-1761.
    [24]
    王海静, 张金流, 刘再华. 四川黄龙降水氢、氧同位素对气候变化的指示意义[J]. 中国岩溶, 2012, 31(3):253-258.

    WANG Haijing, ZHANG Jinliu, LIU Zaihua. Indications of the hydrogen and oxygen isotopes in precipitation for climate change in Huanglong, Sichuan[J]. Carsologica Sinica, 2012, 31(3): 253-258.
    [25]
    涂林玲, 王华, 冯玉梅. 桂林地区大气降水的D和18O同位素的研究[J]. 中国岩溶, 2004, 23(4):304-309. doi: 10.3969/j.issn.1001-4810.2004.04.008

    TU Linling, WANG Hua, FENG Yumei. Research on D and 18O isotope in the precipitation of Guilin[J]. Carsologica Sinica, 2004, 23(4): 304-309. doi: 10.3969/j.issn.1001-4810.2004.04.008
    [26]
    卫克勤, 林瑞芬. 论季风气候对我国雨水同位素组成的影响[J]. 地球化学, 1994, 23(1):33-41. doi: 10.3321/j.issn:0379-1726.1994.01.004

    WEI Keqin, LIN Ruifen. The influence of the monsoon climate on the isotopic composition of precipitation in China[J]. Geochimica, 1994, 23(1): 33-41. doi: 10.3321/j.issn:0379-1726.1994.01.004
    [27]
    Chen C J, Li T Y. Geochemical characteristics of cave drip water respond to ENSO based on a 6-year monitoring work in Yangkou cave, Southwest China[J]. Journal of Hydrology, 2018, 561: 896-907. doi: 10.1016/j.jhydrol.2018.04.061
    [28]
    Cai Z Y, Tian L D. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian monsoon region[J]. Journal of Climate, 2016, 29(4): 1339-1352. doi: 10.1175/JCLI-D-15-0363.1
    [29]
    侯典炯, 秦翔, 吴锦奎, 杜文涛. 乌鲁木齐大气降水稳定同位素与水汽来源关系研究[J]. 干旱区资源与环境, 2011, 25(10):136-142.

    HOU Dianjiong, QIN Xiang, WU Jinkui, DU Wentao. Characteristics of stable isotopes in precipitation and the water vapor sources in Urumqi[J]. Journal of Arid Land Resources and Environment, 2011, 25(10): 136-142.
    [30]
    宋洋, 王圣杰, 张明军, 石玉东. 塔里木河流域东部降水稳定同位素特征与水汽来源[J]. 环境科学, 2022, 43(1):199-209.

    SONG Yang, WANG Shengjie, ZHANG Mingjun, SHI Yudong. Stable isotopes of precipitation in the eastern Tarim river basin and water vapor sources[J]. Environmental Science, 2022, 43(1): 199-209.
    [31]
    徐秀婷, 贾文雄, 朱国锋, 马兴刚, 张昱, 袁瑞丰, 张志远, 石阳. 乌鞘岭南、北坡降水稳定同位素特征及水汽来源对比[J]. 环境科学, 2020, 41(1):155-165.

    XU Xiuting, JIA Wenxiong, ZHU Guofeng, MA Xinggang, ZHAN Yu, YUAN Ruifeng, ZHANG Zhiyuan, SHI Yang. Stable isotope characteristics and vapor source of precipitation in the south and north slopes of Wushaoling mountain[J]. Environmental Science, 2020, 41(1): 155-165.
    [32]
    肖涵余, 张明军, 王圣杰, 车存伟, 杜勤勤, 张宇, 韩婷婷, 苏鹏燕. 陕甘宁地区降水同位素云下二次蒸发效应[J]. 应用生态学报, 2020, 31(11):3814-3822.

    XIAO Hanyu, ZHANG Mingjun, WANG Shengjie, CHE Cunwei, DU Qinqin, ZHANG Yu, HAN Tingting, SU Pengyan. Sub-cloud secondary evaporation effect of precipitation isotope in Shaanxi-Gansu-Ningxia region, China[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3814-3822.
    [33]
    Peng H D, Mayer B, Harris S, Krouse H R. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada[J]. Tellus, 2007, 59(4): 698-704. doi: 10.1111/j.1600-0889.2007.00291.x
    [34]
    Froehlich K, Kralik M, Papesch W, Rank D, Scheifinger H, Stichler W. Deuterium excess in precipitation of Alpine regions: Moisture recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70. doi: 10.1080/10256010801887208
    [35]
    Liu J R, Song X F, Yuan G F, Liu X, Wang S Q. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2010, 55(2): 200-211. doi: 10.1007/s11434-009-0202-7
    [36]
    刘梦娇, 王勇, 张耀华, 李果. 中国西南季风区不同水体稳定同位素特征分析:以重庆市北碚区为例[J]. 中国岩溶, 2015, 34(5):486-494. doi: 10.11932/karst20150509

    LIU Mengjiao, WANG Yong, ZHANG Yaohua, LI Guo. Variation characteristics of stable isotopes in different water bodies in Southwestern China monsoon area: A case study of Beibei district, Chongqing[J]. Carsologica Sinica, 2015, 34(5): 486-494. doi: 10.11932/karst20150509
    [37]
    闫胜文, 刘加珍, 陈永金, 马笑丹, 张亚茹, 朱海勇. 聊城大气降水氢氧同位素特征及水汽来源分析[J]. 生态环境学报, 2022, 31(3):546-555.

    YAN Shengwen, LIU Jiazhen, CHEN Yongjin, MA Xiaodan, ZHANG Yaru, ZHU Haiyong. Moisture sources and characteristics of stable hydrogen and oxygen isotopes in precipitation in Liaocheng[J]. Ecology and Environmental Sciences, 2022, 31(3): 546-555.
    [38]
    章新平, 刘晶淼, 中尾正义, 谢自楚. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009, 31(4):613-619.

    ZHANG Xinping, LIU Jingmiao, Masayoshi Nakawo, XIE Zichu. Vapor origins revealed by deuterium excess in precipitation in Southwest China[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 613-619.
    [39]
    胡菡, 王建力. 重庆市2013年10—12月大气降水中氢氧同位素特征及水汽来源分析[J]. 中国岩溶, 2015, 34(3):247-253.

    HU Han, WANG Jianli. Characteristics of hydrogen and oxygen isotopes in precipitation from October to December 2013 in Chongqing and analysis of moisture sources[J]. Carsologica Sinica, 2015, 34(3): 247-253.
    [40]
    Bortolami G C, Ricci B, Susella G F, Zuppi G M. Hydrogeochemistry of the Corsaglia Valley, Maritime Alps, Piedmont, Italy[J]. Journal of Hydrology, 1979, 44(1): 57-79.
    [41]
    Akers P D, Welker J M, Brook G A. Reassessing the role of temperature in precipitation oxygen isotopes across the eastern and central United States through weekly precipitation-day data[J]. Water Resources Research, 2017, 53: 7644-7661. doi: 10.1002/2017WR020569
    [42]
    张海发, 郑芳文, 杨海全. 南昌市大气降水H-O稳定同位素特征及其水汽来源解析[J]. 地球与环境, 2023, 51(2):133-142.

    ZHANG Haifa, ZHENG Fangwen, YANG Haiquan. The stable H-O isotope characteristic of atmospheric precipitation and the moisture source tracing in Nanchang City[J]. Earth and Environment, 2023, 51(2): 133-142.
    [43]
    Xue Y X, Zhang J, Su Z, Wu Y, Liang Q S, Liang M Q, Liu X Z, Chen C J, Qiu H Y, Li J Y, Li T Y. Quantifying source effects based on rainwater δ18O from 10-year monitoring records in Southwest China[J]. Applied Geochemistry, 2023, 155: 105706.
    [44]
    袁娜, 李廷勇, 王海波, 李俊云, 南素兰, 韩立银, 黄春霞, 赵鑫, 张涛涛. 降水−滴水的δ18O /δD年季变化及与大气环流的关系:以重庆芙蓉洞地区为例[J]. 西南大学学报(自然科学版), 2015, 37(9):133-139.

    YUAN Na, LI Tingyong, WANG Haibo, LI Junyun, NAN Sulan, HAN Liyin, HUANG Chunxia, ZHAO Xin, ZHANG Taotao. Annual and monthly variations of δ18O and δD values in precipitation and drip water and their relationship with atmospheric circulation: A case study in Furong Cave area[J]. Journal of Southwest University (Natural Science Edition), 2015, 37(9): 133-139.
    [45]
    Otte I, Detsch F, Gutlein A, Scholl M, Kiese R, Appelhans T, Nauss T. Seasonality of stable isotope composition of atmospheric water input at the southern slopes of Mt. Kilimanjaro, Tanzania[J]. Hydrological Processes, 2017, 31(22): 3932-3947.
    [46]
    Ren W, Yao T D, Xie S Y, You H. Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau[J]. Journal of Hydrology, 2017, 545: 276-287. doi: 10.1016/j.jhydrol.2016.12.034
    [47]
    李永华, 青吉铭, 李强, 向波. 西南地区东部夏季旱涝的西太平洋副高特征[J]. 西南大学学报(自然科学版), 2013, 35(3):106-116.

    LI Yonghua, QING Jiming, LI Qiang, XIANG Bo. Features of western pacific subtropical high (WPSH) associated with drought/flood in summer over the eastern part of Southwest China[J]. Journal of Southwest University (Natural Science Edition), 2013, 35(3): 106-116.
    [48]
    谭明, 南素兰. 中国季风区降水氧同位素年际变化的“环流效应”初探[J]. 第四纪研究, 2010, 30(3):620-622.

    TAN Ming, NAN Sulan. Primary investigation on interannual changes in the circulation effect of precipitation oxygen isotopes in monsoon China[J]. Quaternary Sciences, 2010, 30(3): 620-622.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (51) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return