• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 43 Issue 5
Dec.  2024
Turn off MathJax
Article Contents
LUO Shuwen, MAO Yongqin, WU Kehua, GAO Zhandong, WANG Huicheng, WANG Deyuan, SUN Yan, DENG Yadong, ZHANG Hongzhi. Research on hydrogeomorphologic characteristics and evolution of the watershed on the Gaopo karst tableland in Huaxi of Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(5): 991-1006. doi: 10.11932/karst20240501
Citation: LUO Shuwen, MAO Yongqin, WU Kehua, GAO Zhandong, WANG Huicheng, WANG Deyuan, SUN Yan, DENG Yadong, ZHANG Hongzhi. Research on hydrogeomorphologic characteristics and evolution of the watershed on the Gaopo karst tableland in Huaxi of Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(5): 991-1006. doi: 10.11932/karst20240501

Research on hydrogeomorphologic characteristics and evolution of the watershed on the Gaopo karst tableland in Huaxi of Guizhou

doi: 10.11932/karst20240501
  • Received Date: 2024-06-20
  • Accepted Date: 2024-09-04
  • Rev Recd Date: 2024-09-03
  • Available Online: 2024-12-30
  • In order to explore the hydrogeomorphologic characteristics and formation mechanism of the watershed on the Gaopo karst tableland in Huaxi, Guizhou, this study investigates the spatial distribution of geological structure, lithology and geomorphology, in conjunction with the hydrological characteristics of the study area. It employs the theory of karst hydrogeomorphology to discuss the development of these characteristics. The results indicate: (1) The karst landforms of the Gaopo karst tableland, including poljes, edge poljes, peak-forest valleys, island peak clusters and karst caves, are well developed and exhibit layered structural characteristics. (2) The peak-forest valley is mainly developed in the watershed area between the Dumu river and the Baijin river. (3) The landform transitions from the watershed to the drainage base, displaying a spatial distribution pattern of peak-forest valley→peak-cluster depression→valley (or isolated peak).The analysis shows that fractures, joints and faults are the dominant factors controlling the northeastward and southeastward trend of the valley in the study area. Spatial distributions of carbonate rocks and non-carbonate strata play a certain decisive role in karst geomorphology. On the Gaopo karst tableland in Huaxi, there is an erosion base at Grade-5 in the valley and at the transition end of the broad anticline, but not in the watershed area. This phenomenon is caused by the fact that the crust began to rise again before the river tractive erosion in a certain period spread to the study area. In the broad anticline area, the tractive erosion path of the previous period spread to the center area, so only a Grade-4 erosion base was formed in the study area. Based on the layered geomorphic structure, it can be seen that from the center to the edge of the tableland and then to the valley, there is a turning point in the erosion base at the edge of tableland. In addition, the erosion base of each grade from the anticlinal transition end to the anticlinal center (from the edge to the center of tableland) is relatively stable with small hydraulic gradients, but the hydraulic gradients in erosion bases from the transition end to the synclinal valley are much larger than those on the anticline. Therefore, in the process of drainage from the center to the edge of tableland and then to the valley, there is also a turning point for the groundwater level as well as the surface water level of Gaopo karst tableland at its edge. As a result, the flowing rates of both the surface runoff and groundwater runoff on the box anticlinal karst tableland are slow, or the runoffs are transformed into karst lakes and pools inside the box anticlinal karst tableland, whose side erosion is strong, forming karst landforms of peak-forest plain, peak-forest valley, etc. However, with the gradual strengthening of traceable erosion, the turning point also gradually retreated to the center of the tableland, and finally the groundwater level of the tableland disappeared. With the retreat of the turning point, the groundwater level gradually decreased, the saturation zone gradually thickened, and the movement of surface water and groundwater shifted from the horizontal to the vertical. As a result, a large number of depressions, funnels, sinkholes and vertical shafts were developed on the surface.Therefore, it is believed that the formation and evolution of karst geomorphology in the watershed area of the Gaopo karst tableland in Huaxi are closely linked to the development of platform hydrological structure. Throughout geological history, the platform water system has been affected by the tractive erosion caused by surrounding rivers, leading to the disintegration of the surface hydrological network from the edges toward the center of the platform. In this process, the karst geomorphology of the Gaopo karst tableland experienced four stages: stone clint-lake, peak-cluster depression, peak-forest valley and the degradation and extinction of platform geomorphology system.

     

  • loading
  • [1]
    Ford D C, Williams P W. Karst Hydrogeology and Geomorphology[M]. Chichester, United Kingdom: John Wiley & Sons Ltd., 2007.
    [2]
    袁道先, 蒋勇军, 沈立成, 蒲俊兵, 肖琼, 等. 现代岩溶学[M]. 北京:科学出版社, 2016.
    [3]
    胡宝清. 喀斯特人地系统研究[M]. 北京:科学出版社, 2014.

    HU Baoqing. Study on human-land systems in karst areas[M]. Beijing: Science Press, 2014.
    [4]
    曾昭璇. 中国南部石灰岩地貌类型若干问题[J]. 地质学报, 1964, 44(1):119-128.

    TSENG Chiusuen. Some questions on the classification of relief types in karst region in South China[J]. Acta Geologica Sinica, 1964, 44(1): 119-128.
    [5]
    Annable W K. Numerical analysis of conduit evolution in karstic aquifers[D]. Waterloo, Canada: University of Waterloo, 2003.
    [6]
    Radulović M M. A new view on karst genesis[J]. Carbonates and Evaporites, 2013, 28(4): 383-397. doi: 10.1007/s13146-012-0125-2
    [7]
    Mozafari M, Sajjadian M, Sorninia Y, Bagheri R, Ghader F. Hydrogeology and geomorphology of Bisetun aquifer (NW Iran): Interesting example of deep endokarst[J]. Carbonates and Evaporites, 2020, 35(4): 115.
    [8]
    Cvijič J. Geography of the limestone terrains[A]//Cvijič J. Geography of karst (unpublished works). Belgrade, Republic of Serbia: Serbian Academy of Sciences and Arts, 1989: 125-270.
    [9]
    王克林, 陈洪松, 曾馥平, 岳跃民, 张伟, 付智勇. 生态学研究支撑喀斯特区域生态环境治理与科技扶贫[J]. 中国科学院院刊, 2018, 33(2):213-222.

    WANG Kelin, CHEN Hongsong, ZENG Fuping, YUE Yuemin, ZHANG Wei, FU Zhiyong. Ecological research supports ecological environment management and poverty alleviation in karst region of Southwest China[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(2): 213-222.
    [10]
    袁道先. 论峰林地形[J]. 广西地质, 1984(1):79-86.
    [11]
    任美锷, 刘振中, 王飞燕, 等. 岩溶学概论[M]. 北京:商务印书馆, 1983.
    [12]
    宋林华. 喀斯特地貌研究进展与趋势[J]. 地理科学进展, 2000, 19(3):193-202. doi: 10.3969/j.issn.1007-6301.2000.03.001

    SONG Linhua. Progress and trend of karst geomorphology study[J]. Progress in Geography, 2000, 19(3): 193-202. doi: 10.3969/j.issn.1007-6301.2000.03.001
    [13]
    Cvijič J. Das karstphanomen: Versuch einer morphologichen monographie[J]. Geographische Abhandlungen, 1893, 5(3): 217-330.
    [14]
    Cvijič J. Karst, geographic monograph (in Serbian)[M]. Belgrade, Republic of Serbia: Royal Publishing House of Serbia, 1895b.
    [15]
    Shanov S, Kostov K. Tectonic control on karst evolution[J]. Dynamic Tectonics and Karst, 2015:1-5.
    [16]
    Cvijič J. Hydrographie souterraine et évolution morphologique du karst[J]. Revue de Géographie Alpine, 1918, 6(4): 375-426. https://doi.org/10.3406/rga.1918.4727.
    [17]
    Jakucs L. Morphogenetics of karst regions: Variants of karst evolution[M]. Hungary: Akadémiai Kiadó, 1977.
    [18]
    Veress M. Covered karst[M]. Berlin, Heidelberg: Springer, 2016.
    [19]
    Bakalowicz M. Géochimie des eaux et fux de matières dissoutes: L'approche objective du rôle du climat dans la karstogenese[J]. Karst Evolutions Climatiques, 1992: 61-74.
    [20]
    Márton V. Karst types and their karstification[J]. Journal of Earth Science, 2020, 31(3): 621-634.
    [21]
    杨明德, 谭明, 梁虹. 喀斯特流域水文地貌系统[M]. 北京:地质出版社, 1998.
    [22]
    罗书文, 贺卫, 杨桃, 邓亚东, 吕勇, 吴克华, 孟庆鑫. 湘桂走廊地貌发育特征的地学意义及形成机制研究[J]. 中国岩溶, 2021, 40(5):750-759. doi: 10.11932/karst20210502

    LUO Shuwen, HE Wei, YANG Tao, DENG Yadong, LV Yong, WU Kehua, MENG Qingxin. Geological significance of the development characteristics of karst geomorphology and its formation mechanism in Hunan-Guangxi corridor[J]. Carsologica Sinica, 2021, 40(5): 750-759. doi: 10.11932/karst20210502
    [23]
    Ghahrodi M, Jalilian T, Alijani F. Detection of karstic groundwater flow system: A case study of prao-bisetoun limestone mass, Kermanshah Province, Iran[J]. International Bulletin of Water Resources & Development, 2014, 2(4): 27-39.
    [24]
    Klimchouk A. The karst paradigm: Changes, trends and persepctives[J]. Acta Carsologica, 2015, 44(3): 289-313.
    [25]
    朱学稳. 峰林喀斯特的性质及其发育和演化的新思考(1)[J]. 中国岩溶, 1991, 10(1):51-62.

    ZHU Xuewen. New considerations on characteristics and evolution of Fenglin karst[J]. Carsologica Sinica, 1991, 10(1): 51-62.
    [26]
    朱学稳. 峰林喀斯特的性质及其发育和演化的新思考(2)[J]. 中国岩溶, 1991, 10(2):137-150.

    ZHU Xuewen. New consicerations on the characteristics and evolution of the Fenglin karst (the second continuance)[J]. Carsologica Sinica, 1991, 10(2): 137-150.
    [27]
    朱学稳. 峰林喀斯特的性质及其发育和演化的新思考(3)[J]. 中国岩溶, 1991, 10(3):171-182.

    ZHU Xuewen. New considerations on characteristics and evolution of Fenglin karst[J]. Carsologica Sinica, 1991, 10(3): 171-182.
    [28]
    贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社, 1987:586-588.

    Guizhou Bureau of Geology and Mineral Exploration and Development. Regional Geology of Guizhou Province[M]. Beijing: Geological Publishing House, 1987: 586-588.
    [29]
    张竹如, 唐波, 蒋玺, 李燕. 龙里高山草原形成机理与旅游资源初评[J]. 中国岩溶, 2001, 20(1):53-57. doi: 10.3969/j.issn.1001-4810.2001.01.010

    ZHANG Zhuru, TANG Bo, JIANG Xi, LI Yan. The forming process of the Longli alpine meadow and evaluation of its tourism resourec[J]. Carsologica Sinica, 2001, 20(1): 53-57. doi: 10.3969/j.issn.1001-4810.2001.01.010
    [30]
    De Waele J, Plan L, Audra P. Recent developments in surface and subsurface karst geomorphology: An introduction[J]. Geomorphology, 2009, 106: 1-8.
    [31]
    王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1):1-8. doi: 10.11932/karst20180101

    WANG Yu. Vertical zoning of groundwater runoff system in karst plateau[J]. Carsologica Sinica, 2018, 37(1): 1-8. doi: 10.11932/karst20180101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (115) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return