• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 43 Issue 4
Oct.  2024
Turn off MathJax
Article Contents
SONG Tong, LI Xinxin, ZHANG Wei, HU Tao, ZHENG Xiaohui. Detection of karst collapses through microtremor surface waves based on windowing cross-correlation function[J]. CARSOLOGICA SINICA, 2024, 43(4): 937-947. doi: 10.11932/karst20240415
Citation: SONG Tong, LI Xinxin, ZHANG Wei, HU Tao, ZHENG Xiaohui. Detection of karst collapses through microtremor surface waves based on windowing cross-correlation function[J]. CARSOLOGICA SINICA, 2024, 43(4): 937-947. doi: 10.11932/karst20240415

Detection of karst collapses through microtremor surface waves based on windowing cross-correlation function

doi: 10.11932/karst20240415
  • Received Date: 2024-03-03
  • The study area is located in the karst development area of Pingxiang in the west of Jiangxi Province, China. The landform of this area is complex, low in the northwest and high in the southeast. The fold action and gravitational sliding action led to the development of faults and extensional sliding nappe structures in the area, accompanied by magmatic intrusion activities, which has formed multi-phase superimposed complex structures. Atmospheric precipitation and groundwater in the upstream limestone areas constitute the main water source in the study area. Meanwhile, karst collapses may cause the formation of holes below the surface, seriously endangering people's life and property. Therefore, finding out the geological situation of the collapse area can provide a reference for the understanding of the geological characteristics and the groundwater system in this area.Microtremor is a kind of persistent weak vibration signal observed on the surface caused by industrial vibrations, traffic noises, tidal currents, atmospheric activities and other activities on the earth. Surface waves are formed by vertical waves and transverse waves interfering on the surface. They have the characteristics of low speed, low frequency and frequency dispersion, which lay a foundation for the detection of underground structure. The method of microtremor surface waves survey utilizes various types of vibrations that continuously exist in nature as signal sources. It extracts the information on seismic surface wave field from microtremor records and uses this type of information for imaging underground media. The steps include microtremor signal acquisition in the study area, data preprocessing, empirical Green function calculation, extraction of surface wave dispersion curves and inversion of velocity structure for transverse waves. Among these steps, the empirical Green function is obtained through the cross-correlation operation of the microtremor signals recorded by two detectors, and calculating the empirical Green function is the key to obtain the surface wave information.This study detects the karst collapses in the study area by using microtremor surface waves. However, the surface wave signals are affected by uneven distribution of natural noise sources and random noises, which may cause the low signal-to-noise ratio of the Green function. Therefore, the direct use of the empirical Green function for subsequent data processing may get the dispersion energy spectrum with low resolution, which is not conducive to the subsequent extraction of high-quality dispersion curves and accurate inversion.Due to the above shortcomings, this study first optimized the window function for the cross-correlation function of microtremor signals to improve the signal-to-noise rate of microtremor data, and to enhance the resolution of energy spectrum of microtremor surface wave dispersion. Then, the extraction of dispersion curves and inversion of the virtual source surface record of each group in the study area were conducted to obtain the transverse wave velocity structure of each point along the measurement line. Finally, the distribution positions and depths of karst collapses in the study area were revealed, according to the the transverse wave velocity section below the measurement line generated by inversion as well as the geological interpretation of drilling data. The results show as follows, (1) The selection of window function in the cross-correlation function calculation will affect the resolution of the dispersion energy spectrum, and the window function should be tested in processing the microtremor data. (2) The processing and optimizing of window function for the cross-correlation function can effectively improve the signal-to-noise rate of microtremor surface wave and the resolution of the dispersion energy spectrum, widen the frequency band range of dispersion curves, and improve the accuracy of the inversion. (3) The method of microtremor surface waves survey is highly applicable to karst collapse detection, and the optimization of the window function can determine the range of underground hazards in a more accurate way.

     

  • loading
  • [1]
    蒋小珍, 冯涛, 郑志文, 雷明堂, 张伟, 马骁, 伊小娟. 岩溶塌陷机理研究进展[J]. 中国岩溶, 2023, 42(3):517-527.

    JIANG Xiaozhen, FENG Tao, ZHENG Zhiwen, LEI Mingtang, ZHANG Wei, MA Xiao, YI Xiaojuan. A review of karst collapse mechanisms[J]. Carsologica Sinica, 2023, 42(3): 517-527.
    [2]
    田必林, 姜杰, 郝立彬, 戴晖. 综合物探方法在岩溶塌陷调查中的应用分析[J]. 中国煤炭地质, 2023, 35(7):79-83.

    TIAN Bilin, JIANG Jie, HAO Libin, DAI Hui. Application analysis of different geophysical methods in karst collapse detection[J]. Coal Geology of China, 2023, 35(7): 79-83.
    [3]
    王瑞, 兰恒星, 刘世杰, 伍宇明. 森林火灾对岩土体物理力学特性的影响[J]. 地球科学与环境学报, 2022, 44(1):114-123.

    WANG Rui, LAN Hengxing, LIU Shijie, WU Yuming. Influence of forest fire on physical and mechanical properties of rock and soil[J]. Journal of Earth Sciences and Environment, 2022, 44(1): 114-123.
    [4]
    魏凯, 王延岭, 赵志伟, 吴亚楠, 翟代廷, 闫佰忠. 泰安旧县水源地地下水位动态特征及可开采量研究[J]. 中国岩溶, 2023, 42(5):940-955.

    WEI Kai, WANG Yanling, ZHAO Zhiwei, WU Ya'nan, ZHAI Daiting, YAN Baizhong. Dynamic characteristics of groundwater level and exploitable amount of groundwater source in Jiuxian county, Tai'an[J]. Carsologica Sinica, 2023, 42(5): 940-955.
    [5]
    李庆春, 邵广周, 刘金兰, 梁志强. 瑞雷面波勘探的过去、现在和未来[J]. 地球科学与环境学报, 2006, 28(3):74-77.

    LI Qingchun, SHAO Guangzhou, LIU Jinlan, LIANG Zhiqiang. Past, present and future of Rayleigh surface wave exploration[J]. Journal of Earth Sciences and Environment, 2006, 28(3): 74-77.
    [6]
    姚金, 徐佩芬, 凌甦群, 张华, 刘红兵, 杜亚楠, 游志伟, 张敏. 地铁线路采空区微动剖面法探测研究:以广州地铁14号线二期为例[J]. 地球物理学报, 2023, 66(10):4279-4289.

    YAO Jin, XU Peifen, LING Suqun, ZHANG Hua, LIU Hongbing, DU Ya'nan, YOU Zhiwei, ZHANG Min. Research on microtremor profile method to detection of goaf along subway line: A case study in the second phase of subway line 14[J]. Chinese Journal of Geophysics, 2023, 66(10): 4279-4289.
    [7]
    万光南, 白晨, 郝立彬, 王秀荣, 陆金波. 微动法在深部地热资源勘查中的应用[J]. 中国煤炭地质, 2023, 35(6):76-83.

    WAN Guangnan, BAI Chen, HAO Libin, WANG Xiurong, LU Jinbo. Application of microtremor survey method on deep geothermal resources exploration[J]. Coal Geology of China, 2023, 35(6): 76-83.
    [8]
    徐浩, 吴小平, 盛勇, 廖圣柱, 贾慧涛, 徐子桥. 微动勘探技术在城市地面沉降检测中的应用研究[J]. 物探与化探, 2021, 45(6):1512-1519.

    XU Hao, WU Xiaoping, SHENG Yong, LIAO Shengzhu, JIA Huitao, XU Ziqiao. Application of microtremor survey method in detection of urban land subsidence[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1512-1519.
    [9]
    邬健强, 陈松, 徐俊杰, 郑智杰, 刘永亮, 王越. 被动源面波法在城市居民区建筑间的应用[J]. 中国岩溶, 2023, 42(6):1322-1330.

    WU Jianqiang, CHEN Song, XU Junjie, ZHENG Zhijie, LIU Yongliang, WANG Yue. Application of the method of passive surface wave to the exploration of urban residential area[J]. Carsologica Sinica, 2023, 42(6): 1322-1330.
    [10]
    Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957, 35(3): 415-456.
    [11]
    Claerbout J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2): 264-269. doi: 10.1190/1.1439927
    [12]
    Capon J. Applications of detection and estimation theory to large array seismology[J]. Proceedings of the IEEE, 1970, 58(5): 760-770.
    [13]
    Shapiro N M, Campillo M, Stehly L, Ritzwoller M H. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618. doi: 10.1126/science.1108339
    [14]
    Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x
    [15]
    王伟涛, 倪四道, 王宝善. 地球背景噪声干涉应用研究的新进展[J]. 中国地震, 2011, 27(1):1-13.

    WANG Weitao, NI Sidao, WANG Baoshan. New advances in application of ambient noise interferometry[J]. Earthquake Research in China, 2011, 27(1): 1-13.
    [16]
    尹晓菲, 胥鸿睿, 夏江海, 孙石达, 王芃. 一种基于层析成像技术提高浅地表面波勘探水平分辨率的方法[J]. 地球物理学报, 2018, 61(6):2380-2395.

    YIN Xiaofei, XU Hongrui, XIA Jianghai, SUN Shida, WANG Peng. A travel-time tomography method for improving horizontal resolution of high-frequency surface-wave exploration[J]. Chinese Journal of Geophysics, 2018, 61(6): 2380-2395.
    [17]
    邵广周, 岳亮, 李远林, 吴华. 被动源瑞利波两道法提取频散曲线的质量控制方法[J]. 物探与化探, 2019, 43(6):1297-1308.

    SHAO Guangzhou, YUE Liang, LI Yuanlin, WU Hua. A study of quality control of extracting dispersion curves by two-channel method of passive Rayleigh waves[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1297-1308.
    [18]
    Ning Ling, Xia Jianghai, Dai Tianyu, Liu Ya, Zhang Hao, Xi Chaoqiang. High-frequency surface-wave imaging from traffic-induced noise by selecting in-line sources[J]. Surveys in Geophysics, 2022, 43(6): 1873-1899. doi: 10.1007/s10712-022-09723-2
    [19]
    潘登, 高级, 张海江. 基于速度窗的频散曲线提取方法[C]. 中国地球科学联合学术年会论文集——专题二十五:浅地表地球物理进展. 2023,25:2079.
    [20]
    张唤兰, 王保利. 基于分段波形互相关的井下随采地震数据成像[J]. 煤田地质与勘探, 2020, 48(4):29-33, 40.

    ZHANG Huanlan, WANG Baoli. Waveform cross correlation-based imaging of underground seismic data while mining[J]. Coal Geology & Exploration, 2020, 48(4): 29-33, 40.
    [21]
    夏江海. 高频面波方法[M]. 武汉:中国地质大学出版社, 2015.
    [22]
    Li Xinxin, Li Qingchun, Shen Hongyan. Rayleigh-wave imaging of the loess sediments in the southern margin of the Ordos Basin by improved frequency−wavenumber transform[J]. Journal of Geophysics and Engineering, 2019, 16(1): 77-84. doi: 10.1093/jge/gxy006
    [23]
    邵霄怡. 概率地震危险性的蒙特卡洛方法研究[D]. 北京:中国地震局地震预测研究所, 2018.

    SHAO Xiaoyi. Study on Monte Carlo simulation based probabilistic seismic hazard analysis[D]. Beijing: Institute of Earthquake Science China Earthquake Administration, 2018.
    [24]
    侯靖钥, 夏元平. 江西萍乡时序InSAR形变监测[J]. 北京测绘, 2022, 36(11):1514-1518.

    HOU Jingyue, XIA Yuanping. Timeseries InSAR deformation monitoring in Pingxiang, Jiangxi Province[J]. Beijing Surveying and Mapping, 2022, 36(11): 1514-1518.
    [25]
    姜智东, 饶玉彬, 李昌龙. 江西萍乡大江边地区煤矿地质特征与聚煤规律[J]. 山东煤炭科技, 2020(8):134-136.

    JIANG Zhidong, RAO Yubin, LI Changlong. Geological characteristics of coal mine and coal concentration law in Dajiangbian area of Pingxiang, Jiangxi Province[J]. Shandong Coal Science and Technology, 2020(8): 134-136.
    [26]
    代俊峰, 李增华, 许德如, 邹勇军, 肖富强, 米振华, 张健. 江西萍乐坳陷带新田煤矿关键金属铯的富集特征及成因机制[J]. 地球科学与环境学报, 2023, 45(5):1162-1175.

    DAI Junfeng, LI Zenghua, XU Deru, ZOU Yongjun, XIAO Fuqiang, MI Zhenhua, ZHANG Jian. Enrichment characteristics and genesis mechanism of critical metal cesium in Xintian coal mine of Pingle depression, Jiangxi, China[J]. Journal of Earth Sciences and Environment, 2023, 45(5): 1162-1175.
    [27]
    赵毅斌, 曹员兵, 汪明有. 萍乡北部非可溶岩区地下水富集规律研究及开发利用建议[J]. 江西科学, 2023, 41(1):67-72.

    ZHAO Yibin, CAO Yuanbing, WANG Mingyou. Study on groundwater enrichment law in non-soluble rock area of northern Pingxiang and its application development and utilization suggestions[J]. Jiangxi Science, 2023, 41(1): 67-72.
    [28]
    邵广周, 李庆春. 基于细化分层法探讨面波频散曲线反演参数的简化[J]. 地球科学与环境学报, 2011, 33(3):317-320.

    SHAO Guangzhou, LI Qingchun. Study on parameter simplifying in dispersion curves inversion of surface wave based on subdividing layer method[J]. Journal of Earth Sciences and Environment, 2011, 33(3): 317-320.
    [29]
    王一鸣, 宋先海, 张学强. 基于蚁狮优化算法的瑞雷波频散曲线反演[J]. 地质科技通报, 2023, 42(3):331-337.

    WANG Yiming, SONG Xianhai, ZHANG Xueqiang. Inversion of Rayleigh wave dispersion curves based on antlion optimizer[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 331-337.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (23) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return