Citation: | XU Menghui, WANG Weihong, TIAN Shuojuan, ZI Yingkun, WU Zhouhang, WANG Xiaomeng, XIANG Hongyao, FAN Jing. Influence of different data types and dimension reduction on the recognition accuracy of travertine hyperspectral images[J]. CARSOLOGICA SINICA, 2024, 43(3): 585-594. doi: 10.11932/karst20240305 |
[1] |
牛新生, 郑绵平, 刘喜方, 齐路晶. 青藏高原钙华沉积属性特征及其地质意义[J]. 科技导报, 2017, 35(6):59-64.
NIU Xinsheng, ZHENG Mianping, LIU Xifang, QI Lujing. Sedimentary property and the geological significance of travertines in Qinghai-Tibetan Plateau[J]. Science & Technology Review, 2017, 35(6): 59-64
|
[2] |
刘晶晶, 毛毳, 刘兴瑀, 魏荷花, 权莲顺, 刘泽璇, 张文鑫, 赵冰, 张青. 钙华的形成环境与特征及在油气储集方向的探讨[J]. 沉积学报, 2021, 39(6):1425-1439.
LIU Jingjing, MAO Cui, LIU Xingyu, WEI Hehua, QUAN Lianshun, LIU Zexuan, ZHANG Wenxin, ZHAO Bing, ZHANG Qing. Overview of the formation environment and characteristics of travertines and discussion on the direction of oil and gas reservoir[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1425-1439
|
[3] |
蒋忠诚, 代群威, 董发勤, 张强, 党政, 汪智军, 刘凡. 国内外钙华岩溶景观的研究进展与展望[J]. 中国岩溶, 2021, 40(1):4-10.
JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. Carsologica Sinica, 2021, 40(1): 4-10
|
[4] |
李刚, 董发勤, 代群威, 党政, 赵玉莲. 黄龙钙华有机碳测定方法的对比研究[J]. 岩石矿物学杂志, 2018, 37(1):152-160. doi: 10.3969/j.issn.1000-6524.2018.01.013
LI Gang, DONG Faqin, DAI Qunwei, DANG Zheng, ZHAO Yulian. Comparative study on the determination methods of organic carbon in Huanglong travertine[J]. Acta Petrologica et Mineralogica, 2018, 37(1): 152-160 doi: 10.3969/j.issn.1000-6524.2018.01.013
|
[5] |
Ricketts J W, Ma L, Wagler A E, Garcia V H. Global travertine deposition modulated by oscillations in climate[J]. Journal of Quaternary Science, 2019, 34(7): 558-568. doi: 10.1002/jqs.3144
|
[6] |
杨涵, 陈谦, 王宝刚, 李文生, 李文志, 王炳策, 钱建平. 利用高光谱技术预测采前猕猴桃干物质含量的可行性试验[J]. 农业工程学报, 2022, 38(13):133-140. doi: 10.11975/j.issn.1002-6819.2022.13.015
YANG Han, CHEN Qian, WANG Baogang, LI Wensheng, LI Wenzhi, WANG Bingce, QIAN Jianping. Feasibility of estimating the dry matter content of kiwifruits before being harvested using hyperspectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 133-140 doi: 10.11975/j.issn.1002-6819.2022.13.015
|
[7] |
Cen Yi, Huang Ying, Hu Shunshi, Zhang Lifu, Zhang Jian. Early detection of bacterial wilt in tomato with portable hyperspectral spectrometer[J]. Remote Sensing, 2022, 14(12): 2882.
|
[8] |
Li Hongda, Cui Jian, Zhang Xinle, Han Yongqi, Cao Liying. Dimensionality reduction and classification of hyperspectral remote sensing image feature extraction[J]. Remote Sensing, 2022, 14(18): 4579.
|
[9] |
张楠楠, 张晓, 王城坤, 李莉, 白铁成. 基于高光谱和连续投影算法的棉花LAI值估测[J/OL]. 农业机械学报: 1-8[2023-07-08]. http://kns.cnki.net/kcms/detail/11.1964.S.20220901.1615.030.html.
ZHANG Nanna, ZHANG Xiao, WANG Chenkun, LI Li, BAI Tiecheng. Cotton LAI value estimation based on hyperspectral and continuous projection algorithm[J/OL]. Transactions of the Chinese Society for Agricultural Machinery: 1-8.
|
[10] |
Xu Dandan, Zhang Dong, Shi Dan, Luan Zhaoqing. Automatic extraction of open water using imagery of landsat series[J]. Water, 2020, 12(7): 1928. doi: 10.3390/w12071928
|
[11] |
李晶, 邓晓娟, 杨震, 刘乾龙, 王媛, 崔绿园. 基于时序多光谱影像的干旱草原区开采扰动信息提取方法[J]. 光谱学与光谱分析, 2019, 39(12):3788-3793.
LI Jing, DENG Xiaojuan, YANG Zhen, LIU Qianlong, WANG Yuan, CUI Lyuyuan. A method of extracting mining disturbance in arid grassland based on time series multispectral images[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3788-3793.
|
[12] |
Yu Yinshan, Shao Mingzhen, Jiang Lingjie, Ke Yongbin, Wei Dandan, Zhang Dongyang, Jiang Mingxin, Yang Yudong. Quantitative analysis of multiple components based on support vector machine (SVM)[J]. Optik-International Journal for Light & Electron Optics, 2021, 237: 166759. doi: 10.1016/j.ijleo.2021.166759
|
[13] |
Diago Cisneros L. Corrigendum to "Unitarity and symmetries of the multicomponent scattering matrix"[Ann. Phys. 420 (2020) 168255(1–43)][J]. Annals of Physics, 2022, 437: 168729. doi: 10.1016/j.aop.2021.168729
|
[14] |
Romo Cárdenas G, Avilés Rodríguez G J, Sánchez López J D D, Cosio Leon M, Luque P A, Gomez Gutierrez C M, Nieto Hipolito J, Vazquez Briseno M, Navarro Cota C X. Nyquist-Shannon theorem application for Savitzky-Golay smoothing window size parameter determination in bio-optical signals[J]. Results in Physics, 2018, 11: 17-22. doi: 10.1016/j.rinp.2018.08.033
|
[15] |
Booker N K, Knights P, Gates J D, Clegg R E. Applying principal component analysis (PCA) to the selection of forensic analysis methodologies[J]. Engineering Failure Analysis, 2022, 132: 105937. doi: 10.1016/j.engfailanal.2021.105937
|
[16] |
杨明莉, 范玉刚, 李宝芸. 基于LDA和ELM的高光谱图像降维与分类方法研究[J]. 电子测量与仪器学报, 2020, 34(5):190-196.
YANG Mingli, FAN Yugang, LI Baoyun. Research on dimensionality reduction and classification ofhyperspectral images based on LDA and ELM[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(5): 190-196.
|
[17] |
Mantas C J, Castellano J G, Moral García S, Abellán J. A comparison of random forest based algorithms: Random credal random forest versus oblique random forest[J]. Soft Computing, 2019, 23(21): 10739-10754. doi: 10.1007/s00500-018-3628-5
|
[18] |
Sun H. Prediction of building energy consumption based on BP neural network[J]. Wireless Communications and Mobile Computing, 2022, 2022: 1-10.
|
[19] |
Yang S, Luo L, Tan B. Research on sports performance prediction based on BP neural network[J]. Mobile Information Systems, 2021, 2021: 1-8.
|
[20] |
Román Gallego J, Pérez Delgado M, San Gregorio S V. Convolutional neural networks used to date photographs[J]. Electronics, 2022, 11(2): 227. doi: 10.3390/electronics11020227
|
[21] |
Xie Zhihuai, Guo Zhenhua, Qian Chengshan. Palmprint gender classification by convolutional neural network[J]. IET Computer Vision, 2018, 12(4): 476-483. doi: 10.1049/iet-cvi.2017.0475
|
[22] |
Sun Yuting, Ding Shifei, Zhang Zichen, Jia Weikuan. An improved grid search algorithm to optimize SVR for prediction[J]. Soft Computing, 2021, 25(7): 5633-5644. doi: 10.1007/s00500-020-05560-w
|
[23] |
Wang Dongshu, Tan Dapei, Liu Lei. Particle swarm optimization algorithm: An overview[J]. Soft Computing, 2018, 22(2): 387-408. doi: 10.1007/s00500-016-2474-6
|
[24] |
王铮, 符校, 杜凯旋, 刘纪平, 车向红. 深度学习支持下的地图图片典型地理目标检测[J]. 测绘通报, 2022(11):74-78.
WANG Zheng, FU Xiao, DU Kaixuan, LIU Jiping, CHE Xianghong. Detection of typical geographic object in maps based on deep learning[J]. Bulletin of Surveying and Mapping, 2022(11): 74-78.
|
[25] |
Heydarian M, Doyle T E, Samavi R. MLCM: Multi-label confusion matrix[J]. IEEE Access, 2022, 10: 19083-19095. doi: 10.1109/ACCESS.2022.3151048
|