Citation: | MA Congwen, ZHANG Zhicai, CHEN Xi, CHENG Qinbo, PENG Tao, ZHANG Lin. Modelling karst spring flow in Southwest China based on machine learning[J]. CARSOLOGICA SINICA, 2024, 43(1): 48-56. doi: 10.11932/karst2023y013 |
[1] |
Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3): 218-242. doi: 10.1002/2013RG000443
|
[2] |
李潇, 漆继红, 许模. 西南典型紧窄褶皱小尺度浅层岩溶水系统特征及隧道涌水分析[J]. 中国岩溶, 2020, 39(3):375-383.
LI Xiao, QI Jihong, XU Mo. Analysis on the characteristics of small-scale shallow karst water systems in typical tight-narrow folds and tunnel water inrush in Southwestern China[J]. Carsologica Sinica, 2020, 39(3): 375-383.
|
[3] |
Zhang Zhicai, Chen Xi, Soulsby Chris. Catchment-scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 2017, 31(19): 3421-3436. doi: 10.1002/hyp.11268.
|
[4] |
蒙海花, 王腊春, 苏维词, 霍雨. 基于落水洞的岩溶半分布式水文模型的构建及其应用[J]. 地理科学, 2009, 29(4):550-554. doi: 10.3969/j.issn.1000-0690.2009.04.014
MENG Haihua, WANG Lachun, SU Weici, HUO Yu. Development of a karst sinkhole-based semi-distributed hydrological model and its application[J]. Scientia Geographica Sinica, 2009, 29(4): 550-554. doi: 10.3969/j.issn.1000-0690.2009.04.014
|
[5] |
王宇. 西南岩溶区岩溶水系统分类、特征及勘查评价要点[J]. 中国岩溶, 2002, 21(2):114-119. doi: 10.3969/j.issn.1001-4810.2002.02.008
WANG Yu. Classification, features of karst water system and key point for the evaluation to karst water exploration in Southwest China karst area[J]. Carsologica Sinica, 2002, 21(2): 114-119. doi: 10.3969/j.issn.1001-4810.2002.02.008
|
[6] |
王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1):1-8.
WANG Yu. Vertical zoning of groundwater runoff system in karst plateau[J]. Carsologica Sinica, 2018, 37(1): 1-8.
|
[7] |
王在高, 徐萍莉. 浅析喀斯特流域水文地貌过程—响应系统[J]. 贵州师范大学学报(自然科学版), 2002, 20(1):36-39.
WANG Zaigao, XU Pingli. An elementary analysis of hydro-geomorphological process—response system[J]. Journal of Guizhou Normal University (Natural Sciences), 2002, 20(1): 36-39.
|
[8] |
Hu Caihong, Wu Qiang, Li Hui, Jian Shengqi, Li Nan, Lou Zhengzheng. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation[J]. Water, 2018, 10(11): 1543. doi: 10.3390/w10111543
|
[9] |
Goodfellow I, Bengio Y, Courville A. Deep learning[M]. Cambridge, USA: The MIT Press, 2016.
|
[10] |
Kratzert F, Klotz D, Brenner C, Schulz K. Rainfall-runoff modelling using Long Short-Term Memory(LSTM) networks[J]. Hydrology and Earth System Sciences, 2018, 22(11): 6005-6022. doi: 10.5194/hess-22-6005-2018
|
[11] |
党池恒, 张洪波, 陈克宇, 支童, 卫星辰. 长短期记忆神经网络在季节性融雪流域降水-径流模拟中的应用[J]. 华北水利水电大学学报(自然科学版), 2020, 41(5):10-18, 33. doi: 10.19760/j.ncwu.zk.2020057
DANG Chiheng, ZHANG Hongbo, CHEN Keyu, ZHI Tong, WEI Xingchen. Application of the long-short-term memory neural network for rainfall-runoff simulation in seasonal snowmelt basin[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2020, 41(5): 10-18, 33. doi: 10.19760/j.ncwu.zk.2020057
|
[12] |
Y Bengio, P Simard, P Frasconi. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. doi: 10.1109/72.279181
|
[13] |
Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(2): 107-116. doi: 10.1142/S0218488598000094
|
[14] |
Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[15] |
Gao Shuai, Huang Yuefei, Zhang Shuo, Han Jingcheng, Wang Guangqian, Zhang Meixin, Lin Qingsheng. Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation[J]. Journal of Hydrology, 2020, 589: 125188. doi: 10.1016/j.jhydrol.2020.125188
|
[16] |
Zhang Di, Lin Junqiang, Peng Qidong, Wang Dongsheng, Yang Tiantian, Soroosh Sorooshian, Liu Xuefei, Zhuang Jiangbo. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm[J]. Journal of Hydrology, 2018, 565: 720-736. doi: 10.1016/j.jhydrol.2018.08.050
|
[17] |
Tennant C, Larsen L, Bellugi D, Moges E, Zhang Liang, Ma Hongxu. The utility of information flow in formulating discharge forecast models: A case study from an arid snow-dominated catchment[J]. Water Resources Research, 2020, 56(8): e2019WR024908.
|
[18] |
顾逸. 基于长短期记忆循环神经网络及其结构约减变体的中长期径流预报研究[D]. 武汉: 华中科技大学, 2018.
GU Yi. Research on mid-long-term runoff forecasting based on long-short-term memory recurrent networks and its structural reduction variant[D]. Wuhan: Huazhong University of Science and Technology, 2018.
|
[19] |
Cho K, Kim Y. Improving streamflow prediction in the WRF-Hydro model with LSTM networks[J]. Journal of Hydrology, 2022, 605: 127297. doi: 10.1016/j.jhydrol.2021.127297
|
[20] |
Lu Dan, Goutam Konapala, Scott L Painter, Shih Chieh Kao, Sudershan Gangrade. Streamflow simulation in data-scarce basins using bayesian and physics-Informed machine learning models[J]. Journal of Hydrometeorology, 2021, 22(6): 1421-1438.
|
[21] |
张志才, 陈喜, 刘金涛, 彭韬, 石朋, 严小龙. 喀斯特山体地形对表层岩溶带发育的影响:以陈旗小流域为例[J]. 地球与环境, 2012, 40(2):137-143.
ZHANG Zhicai, CHEN Xi, LIU Jintao, PENG Tao, SHI Peng, YAN Xiaolong. Influence of topography on epikarst in karst mountain areas: A case study of Chenqi catchment[J]. Earth and Environment, 2012, 40(2): 137-143.
|
[22] |
Zhang Zhicai, Chen Xi, Cheng Qinbo, Soulsby Chris. Using Storage Selection(SAS) functions to understand flow paths and age distributions in contrasting karst groundwater systems[J]. Journal of Hydrology, 2021, 602: 126785
|
[23] |
Zhang Zhicai, Chen Xi, Cheng Qinbo, Soulsby Chris. Storage dynamics, hydrological connectivity and flux ages in a karst catchment: Conceptual modelling using stable isotopes[J]. Hydrology and Earth System Sciences, 2019, 23(1): 51-71. doi: 10.5194/hess-23-51-2019
|
[24] |
Cai Lianbin, Chen Xi, Huang Richao, Keith Smettem. Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China[J]. Journal of Hydrology, 2022, 604: 127231.
|
[25] |
侯怡萍. 流域生态水文敏感度及其影响因子分析[D]. 成都: 电子科技大学, 2019.
HOU Yiping. Research on ecohydrological sensitivity of watershed and its influencing factors analysis[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
|
[26] |
刘炜, 焦树林, 李银久, 莫跃爽, 赵宗权, 张洁, 赵梦. 喀斯特地表植被覆盖变化及其与气候因子相关性分析[J]. 水土保持研究, 2021, 28(3):203-215. doi: 10.13869/j.cnki.rswc.2021.03.024
LIU Wei, JIAO Shulin, LI Yinjiu, MO Yueshuang, ZHAO Zongquan, ZHANG Jie, ZHAO Meng. Analysis on the correlation between vegetation cover of land surface and climatic factors in karst area[J]. Soil and Water Conservation Research, 2021, 28(3): 203-215. doi: 10.13869/j.cnki.rswc.2021.03.024
|
[27] |
李林立. 西南典型岩溶区生态环境对表层岩溶水调蓄功能的影响研究[D]. 重庆: 西南大学, 2009.
LI Linli. Study of effects of ecological environment on regulated function of epikarst water in typical karst area of Southwest, China[D]. Chongqing: Southwest University, 2009.
|
[28] |
Zhang Zhicai, Chen Xi, Chen Xunhong, Shi Peng. Quantifying time lag of epikarst-spring hydrograph response to rainfall using correlation and spectral analyses[J]. Hydrogeology Journal, 2013, 21(7): 1619-1631. doi: 10.1007/s10040-013-1041-9
|