Citation: | JIAO Youjun, HUANG Qibo, YU Qingchun. Influence of initial fractures on the occurrence of karst turbulent flow[J]. CARSOLOGICA SINICA, 2022, 41(4): 501-510. doi: 10.11932/karst20220401 |
[1] |
袁道先, 朱德浩, 翁金桃, 朱学稳, 韩行瑞, 汪训一, 蔡桂鸿, 朱远峰, 崔光中, 邓自强. 中国岩溶学[M]. 北京: 地质出版社, 1993
YUAN Daoxian, ZHU Dehao, WENG Jintao, ZHU Xuewen, HAN Xingrui, WANG Xunyi, CAI Guihong, ZHU Yuanfeng, CUI Guangzhong, DENG Ziqiang. Karst of China[M]. Beijing: Geological Publishing House, 1993.
|
[2] |
王大纯, 张人权, 史毅虹, 许绍倬, 于青春, 梁杏. 水文地质学基础[M]. 北京: 地质出版社, 1995
WANG Dachun, ZHANG Renquan, SHI Yihong, XU Shaozhuo, YU Qingchun, LIANG Xing. Fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 1995.
|
[3] |
Yu Q, Shen J, Wan J, Ohnishi Y. Some investigation on early organization of karst system[J]. Journal of China University of Geosciences, 1999, 10:314-321.
|
[4] |
Dreybrodt W. The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution[J]. The Journal of Geology, 1990, 98(5):639-655. doi: 10.1086/629431
|
[5] |
Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+ CO2→ H++ HCO3−. Geochimica et Cosmochimica Acta, 1997, 61(14): 2879-2889.
|
[6] |
Groves C G, Howard A D. Minimum hydrochemical conditions allowing limestone cave development[J]. Water Resources Research, 1994, 30(3):607-615. doi: 10.1029/93WR02945
|
[7] |
Gabrovšek F, Romanov D, Dreybrodt W. Early karstification in a dual-fracture aquifer: The role of exchange flow between prominent fractures and a dense net of fissures[J]. Journal of Hydrology, 2004, 299(1-2):45-66. doi: 10.1016/j.jhydrol.2004.02.005
|
[8] |
Kaufmann G. Modelling karst geomorphology on different time scales[J]. Geomorphology, 2009, 106(1):62-77.
|
[9] |
Reimann T, Rehrl C, Shoemaker W B, Geyer T, Birk S. The significance of turbulent flow representation in single‐continuum models[J]. Water Resources Research, 2011, 47(9):1-15.
|
[10] |
Howard A D, Groves C G. Early development of karst systems: 2. turbulent flow[J]. Water Resources Research, 1995, 31(1):19-26. doi: 10.1029/94WR01964
|
[11] |
Gabrovšek F, Peric B, Kaufmann G. Hydraulics of epiphreatic flow of a karst aquifer[J]. Journal of Hydrology, 2018, 560:56-74. doi: 10.1016/j.jhydrol.2018.03.019
|
[12] |
Dreybrodt W. Principles of early development of karst conduits under natural and man‐made conditions revealed by mathematical analysis of numerical models[J]. Water Resources Research, 1996, 32(9):2923-2935. doi: 10.1029/96WR01332
|
[13] |
于青春, 武雄, 大西有三. 非连续裂隙网络管状渗流模型及其校正[J]. 岩石力学与工程学报, 2006, 25(7):1469-1474.
YU Qingchun, WU Xiong, Ohnishi Yuzo. Channel model for fluid flow in discrete fracture network and its modification[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7):1469-1474.
|
[14] |
王云, 于青春, 薛亮, 马浩. 裂隙岩溶含水系统溢流泉演化过程的数值模拟[J]. 中国岩溶, 2010, 29(4):378-384. doi: 10.3969/j.issn.1001-4810.2010.04.005
WANG Yun, YU Qingchun, XUE Liang, MA Hao. Numerical simulation for the evolution of the overflow spring in fracture-karst aquifer system[J]. Carsologica Sinica, 2010, 29(4):378-384. doi: 10.3969/j.issn.1001-4810.2010.04.005
|
[15] |
高阳, 邱振忠, 于青春. 层流—紊流共存流场中岩溶裂隙网络演化过程的数值模拟方法[J]. 中国岩溶, 2019, 38(6):831-838.
GAO Yang, QIU Zhenzhong, YU Qingchun. Numerical simulating method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. Carsologica Sinica, 2019, 38(6):831-838.
|
[16] |
刘再华, Dreybrodt W. DBL理论模型及方解石溶解沉积速率预报[J]. 中国岩溶, 1998, 17(1):1-7.
LIU Zaihua, DREYBRODT Wolfgang. The DBL model and prediction of calcite dissolution / precipitation rates[J]. Carsologica Sinica, 1998, 17(1):1-7.
|