• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
ZHU Xinyue,LI Sanbai,FENG Xiating,et al.Numerical investigation on the main controlling factors of the dissolution evolution of three-dimensional fracture-cavity reservoirs[J].Carsologica Sinica,2021,40(06):943-951. doi: 10.11932/karst20210604
Citation: ZHU Xinyue,LI Sanbai,FENG Xiating,et al.Numerical investigation on the main controlling factors of the dissolution evolution of three-dimensional fracture-cavity reservoirs[J].Carsologica Sinica,2021,40(06):943-951. doi: 10.11932/karst20210604

Numerical investigation on the main controlling factors of the dissolution evolution of three-dimensional fracture-cavity reservoirs

doi: 10.11932/karst20210604
Funds:

 51804064

 N170103010

  • Received Date: 2019-09-23
  • Publish Date: 2021-12-25
  • Carbonate reservoir is rich in oil and gas reserves; however, the complex fracture and cave structure of the carbonate reservoir, forming through a long-term geological structural movement, lead to some difficulties in oil and gas exploitation. For this engineering problem, we use an in-house numerical model-KarstEvolSys to study the effects of fracture density and the magnitude of rainfall on the dissolution of carbonate rocks. Numerical simulations have been performed by controlling the number of fractures embedded in the matrix and the velocity supply to the fracture system. Our results show that the more fractures embedded in the matrix, the less water flow captured by each fracture, which leads to a relatively slow increase of the fracture aperture when the fracture density increases. When the magnitude of rainfall remains constant, the dissolution rate of rock mass becomes slow accordingly. If the same karst system is supplied by different amounts of rainfall, the water would dilute Ca2+ concentration in the system,speeding up the water-rock reaction. Therefore, the increasing rainfall would lead to a higher dissolution rate of the rock mass.

     

  • ZHU Xinyue,LI Sanbai,FENG Xiating,et al.Numerical investigation on the main controlling factors of the dissolution evolution of three-dimensional fracture-cavity reservoirs[J].Carsologica Sinica,2021,40(06):943-951.
  • loading
  • 李阳,康志江,薛兆杰,等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发,2018, 45(4): 669-678.
    李阳, 金强, 钟建华,等. 塔河油田奥陶系岩溶分带及缝洞结构特征[J]. 石油学报,2016,37(3): 289-298.
    李阳, 侯加根, 李永强. 碳酸盐岩缝洞型储集体特征及分类分级地质建模[J]. 石油勘探与开发,2016, 43(4): 600-606.
    金强, 田飞. 塔河油田岩溶型碳酸盐岩缝洞结构研究[J]. 中国石油大学学报(自然科学版),2013, 37(5): 15-21.
    DreybrodtW. The role of dissolution kinetics in the development of karstification in limestone:A model simulation of karst evolution[J].The Journal of Geology,1990, 98(5):639-655.
    田晓丹,姜晓桢. 岩体单裂隙流固热化学耦合作用数值模拟研究[J]. 人民长江, 2015, 46(9): 84-90.
    薛亮,于青春. 岩溶水系统演化中河间地块分水岭消失过程的数值模拟分析[J]. 水文地质工程地质,2009(2): 7-12.
    王云, 于青春,薛亮. 溶蚀作用下古岩溶盆地系统中介质场演化模拟[J]. 现代地质, 2010, 24(5): 1007-1015.
    王喆, 卢丽,夏日元, 等. 岩溶地下水系统演化数值模拟[J]. 长江科学院院报, 2013, 30(7): 22-28.
    毛亮, 于青春,王敬霞, 等. 降雨对裂隙性岩溶含水系统演化影响的数值模拟研究[J]. 中国岩溶, 2017, 36(1): 42-48.
    KaufmannG. Modelling karst geomorphology on different time scales[J]. Geomorphology, 2009, 106:62-77.
    KaufmannG. Modeling unsaturated flow in an evolving karst aquifer [J]. Journal of Hydrology, 2003, 276:53-70.
    KaufmannG. A model comparison of karst aquifer evolution for different matrix-flow formulations[J]. Journal of Hydrology, 2003, 283:281-289.
    KaufmannG, RomanovD, HillerT. Modeling three-dimensional karst aquifer evolution using different matrix contributions[J]. Journal of Hydrology, 2010, 388:241-250.
    KaufmannG, GabrovšekF, RomanovD. Deep conduit flow in karst aquifers revisited[J]. Water Resources Research, 2014,50:4821-4836.
    LiS, KangZ, FengX T, PanZ, et al. Three-dimensional hydro-chemical model for dissolutional growth of fractures in karst aquifers[J].Water Resources Research, 10.1029/2019 WR025631.
    LeeS H,LoughM F,JensenC L.Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J]. Water Resources Research, 2001,37(3):443-455.
    LiL, LeeS H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[C]//International Oil & Gas Confernce & Exhibition in China.中国石油学会,2008.
    Karimi-FardM, DurlofskyL J, AzizK. An efficient discrete fracture model applicable for general purpose reservoir simulators[C]//SPE Reservoir Simulation Symposium,2003:227-236.
    XuY, Cavalcante FilhoJ S, WeiY. Discrete-fracture modeling of complex hydraulic-fracture geometries in reservoir simulators[J].Spe Reservoir Evaluation & Engineering, 2016:1-20.
    HannaR B, RajaramH. Influence of aperture variability on dissolutional growth of fissures in Karst Formations[J]. Water Resources Research, 1998,34(11):2843-2853.
    PangaM K R, ZiauddinM, BalakotaiahV. Two-scale continuum model for simulation of wormholes in carbonate acidization[J], Aiche Journal, 2005, 51(12): 3231-3248.
    CarmanPC. Fluid flow through granular beds[J]. Chemical Engineering Research & Design,1997, 75(1):32-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1568) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return