• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
SUN Ping’an,XIAO Qiong,GUO Yongli,et al.Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example[J].Carsologica Sinica,2021,40(05):825-834. doi: 10.11932/karst20210509
Citation: SUN Ping’an,XIAO Qiong,GUO Yongli,et al.Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example[J].Carsologica Sinica,2021,40(05):825-834. doi: 10.11932/karst20210509

Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example

doi: 10.11932/karst20210509
Funds:

 KY201802009

 DD20190022

 132852KYSB20170029-01

 2018GXNSFDA050002

  • Received Date: 2021-03-30
  • Publish Date: 2021-10-25
  • The chemical weathering of carbonates is faster than silicates, and the contribution of carbonate mineral weathering to river water chemistry is dominant in the mixed carbonate and silicate terrain. In order to study the characteristics of carbonate weathering and karst carbon sink in the mixed carbonate and silicate terrain, 24 standard dissolution samples were placed at the Darongjiang river, the Xiaorongjiang river and Lingqu basins in the upper reaches of the Lijiang river basin and the physical and chemical properties of the corresponding soil were tested. Based on the dissolution amounts and soil physical and chemical characteristics during the rainy season and the whole year,the main controlling factors and seasonal differences of the dissolution amounts are analyzed, and the intensities of karst carbon sink in Darongjiang river, Xiaorongjiang river and Lingqu basins are quantitatively evaluated. The results show that the dissolution amounts of aerial samples are mainly controlled by rainfall. While the dissolution amounts decreased significantly when the vegetation partly blocks the rainfall, the surface and subsoil dissolution amounts are controlled by both rainfall and hydrological processes. The dissolution rate is bigger in rainy season, and the aerial samples are mainly controlled by rainfall, while the surface and subsoil samples are mainly controlled by soil moisture changes. Based on the dissolution of carbonate tablet, the karst carbon sink intensities in the the Darongjiang river, the Xiaorongjiang river and Lingqu basins are respectively 0.75,0.30 and 2.92 tCkm-2yr-1.

     

  • SUN Ping’an,XIAO Qiong,GUO Yongli,et al.Carbonate dissolution rate and karst carbon sink in mixed carbonate and silicate terrain:Take the upper reaches of the Lijiang river basin as an example[J].Carsologica Sinica,2021,40(05):825-834.
  • loading
  • 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 1(1): 1-6.
    刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19(4): 293-300.
    何师意, 康志强, 李清艳, 等. 高分辨率实时监测技术在岩溶碳汇估算中的应用:以板寨地下河监测站为例[J]. 气候变化研究进展, 2011, 7(3): 157-161.
    MeybeckM. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428.
    GaillardetJ, DupréB, LouvatP, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30.
    GombertP. Role of karstic dissolution in global carbon cycle [J]. Global and Planetary Change, 2002, 33(1): 177-184.
    LiuZ, DreybrodtW, WangH. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4): 162-172.
    MartinJ B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 2017, 449: 58-72.
    LiH, WangS, BaiX, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170.
    李朝君, 王世杰, 白晓永, 等. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332.
    李汇文, 王世杰, 白晓永, 等. 中国石灰岩化学风化碳汇时空演变特征分析[J]. 中国科学: 地球科学, 2019, 49(6): 986-1003.
    覃小群, 蒙荣国, 莫日生. 土地覆盖对岩溶地下河碳汇的影响:以广西打狗河流域为例[J]. 中国岩溶, 2011, 30(4): 372-378.
    曾思博, 蒋勇军. 土地利用对岩溶作用碳汇的影响研究综述 [J]. 中国岩溶, 2016, 35(2): 153-163.
    JiangY, YuanD, ZhangC, et al. Impact of land use change on groundwater quality in a typical karst watershed of southwest China[J]. Hydrogeology Journal, 2008, 16(4): 727-735.
    ZhaoM, ZengC, LiuZ, et al. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chengqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 2010, 388(1-2): 121-130.
    章程. 不同土地利用土下溶蚀速率季节性差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56(1): 136-140.
    章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报, 2011, 56(26): 2174-2180.
    王文娟, 蓝芙宁, 蒋忠诚, 等. 湖南大龙洞流域不同岩性不同土地利用类型下碳酸盐岩试片的溶蚀速率[J]. 中国岩溶, 2013, 32(1): 29-33.
    LanF, QinX, JiangZ, et al. Influence of land use/land cover on hydrogeochemical indexes of karst groundwater in the Dagouhe Basin, Southwest China[J]. Clean-Soil,Air,Water, 2015, 43(5): 683-689.
    JacobsonA D, BlumJ D, ChamberlainC P, et al. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 29-46.
    BlumJ D, GazisC A, JacobsonA D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series[J].Geology, 1998, 26: 411-414.
    孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123-131.
    SunP, HeS, YuS, et al. Dynamics in riverine inorganic and organic carbon based on carbonate weathering coupled with aquatic photosynthesis in a karst catchment, Southwest China [J]. Water Research, 2021, 189: 116658.
    孙平安,李秀存,于奭,等.酸雨溶蚀碳酸盐岩的源汇效应分析:以广西典型岩溶区为例[J]. 中国岩溶, 2017,36(1): 101-108.
    蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J]. 中国岩溶, 2000,19(3): 212-217.
    刘再华. 大气CO2两个重要的汇[J]. 科学通报, 2000, 45(21): 2348-2351.
    原雅琼, 何师意, 于奭, 等. 柳江流域柳州断面水化学特征及无机碳汇通量分析[J]. 环境科学, 2015, 36(7): 2437-2445.
    YuS, DuW, SunP, et al. Study on the hydrochemistry character and carbon sink in the middle and upper reaches of the Xijiang River basin, China[J]. Environmental Earth Sciences, 2015, 74: 997-1005.
    袁道先, 覃政教, 黄桂强, 等. 西南岩溶石山地区重大地质环境问题及对策研究[M]. 北京: 科技出版社, 2014: 522.
    陈燕丽, 莫建飞, 莫伟华, 等. 近30年广西喀斯特地区石漠化时空演变[J]. 广西科学, 2018, 25(5): 625-631.
    LiuZ, MacphersonG L, GrovesG, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1566) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return