• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
DONG Faqin, ZHENG Fei, DAI Qunwei, LI Qiongfang, CHEN Yuheng, LIU Mingxue, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alper Baba, Andelka Plenkovic-Moraj. Preliminary study on nanometer growth process and regulatory mechanism of travertine nonclassical deposition- A case study of travertine in Jiuzhaigou valley and Huanglong region[J]. CARSOLOGICA SINICA, 2021, 40(1): 55-67. doi: 10.11932/karst20210106
Citation: DONG Faqin, ZHENG Fei, DAI Qunwei, LI Qiongfang, CHEN Yuheng, LIU Mingxue, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alper Baba, Andelka Plenkovic-Moraj. Preliminary study on nanometer growth process and regulatory mechanism of travertine nonclassical deposition- A case study of travertine in Jiuzhaigou valley and Huanglong region[J]. CARSOLOGICA SINICA, 2021, 40(1): 55-67. doi: 10.11932/karst20210106

Preliminary study on nanometer growth process and regulatory mechanism of travertine nonclassical deposition- A case study of travertine in Jiuzhaigou valley and Huanglong region

doi: 10.11932/karst20210106
  • Publish Date: 2021-02-25
  • Travertine is one of the important karst carbonate precipitates in nature, and its formation process is often affected by life activities. Clarifying the role of travertine biodeposition can help to better understand the climatic and environmental implications of travertine petrographic and geochemical characteristics. Taking travertine in Jiuzhaigou and Huanglong region as example, the characteristics of modern travertine nanocrystalline, the growth and aggregate morphology of travertine in Huanglong and Jiuzhaigou are described. The reasons for the regulation of the growth and morphology of travertine by biological organic matter in simulated experiments was analyzed, and the two-way and four-stage mechanism of biological activity and metabolites regulating the nucleation, growth and crystal appearance of travertine crystals was revealed.This paper is of great scientific value to explore the cause of the formation of travertine, the regulation mechanism of the growth of calcium carbonate,the degradation factors of travertine, and the protection and sustainable utilization of the travertine landscape.

     

  • loading
  • [1]
    R. Sandya Rani , Moumita Saharay . Molecular dynamics simulation of protein mediated biomineralization of amorphous calcium carbonate[J]. RSC Adv., 2019, 9:1653-1663.
    [2]
    Wei Li, Liping Liu, Weishan Chen, et al. Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors[J]. Process Biochemistry, 2010, 45:1017-1021.
    [3]
    Pouget EM, pH Bomans , JACM Goos, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 5920(323):1455-1458.
    [4]
    Ozaki N, Sakuda S, Nagasawa H. A novel highly acidic polysaccharide with inhibitory activity on calcification from the calcified scale “coccolith” of a coccolithophoridalga, Pleurochrysis haptonemofera[J]. Biochem Biophys Res Commun, 2007, 357:1172-1176.
    [5]
    Hayashi S, Ohkawa K, Suwa Y, et al. Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine[J]. Macromol Biosci,2008, 8:46-59.
    [6]
    汪智军, 殷建军, 蒲俊兵, 等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6):606-617.
    [7]
    Tong H, Ma W T, Wang L L, et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process[J]. Biomaterials, 2004, 25:3923-3929.
    [8]
    Li Tianxiao, Hu Yulan, Zhang Bingjian. Biomineralization induced by colletotrichum acutatum: A potential strategy for cultural relic bioprotection[J].Frontiers in Microbiology, 2018, 9:1884-1892.
    [9]
    Yang Mingjun, Stipp SLS, Harding J. Biological control on calcite crystallization by polysaccharides[J]. Crystal Growth & Design, 2008, 8(11): 4066-4074.
    [10]
    王建萍, 李琼芳, 董发勤, 等. 3种常见细菌胞外特征有机酸对方解石的溶蚀研究[J]. 岩石矿物学杂志, 2015, 34(3):387-392.
    [11]
    陈超, 李琼芳, 张清明, 等. 低温环境下两种氨基酸对碳酸钙矿化影响的研究[J]. 高校地质学报, 2017, 23(4):606-614.
    [12]
    于璐嘉, 李琼芳, 陈超, 等. 黄龙嗜冷细菌两种胞外单糖对碳酸钙矿化影响[J]. 岩石矿物学杂志, 2018, 37(3):395-403.
    [13]
    李琼芳, 何鑫, 陈超, 等. 两株嗜冷碳酸钙矿化菌对大理石表面修复效果研究[J]. 人工晶体学报, 2018, 47(1):172-178.
    [14]
    李琼芳, 董发勤, 李骐言等. 柠檬酸对黄龙碳酸钙矿化影响的模拟实验研究[J]. 岩石矿物地球化学通报,2015, 34(2):294-300.
    [15]
    张文静, 李琼芳, 张存凯, 等. 嗜冷型产碳酸酐酶菌对碳酸钙沉积的影响[J]. 环境科学与技术,2016, 39(3):1-5.
    [16]
    刘明学, 董发勤, 孙仕勇, 安德军, 易伟, 等. 黄龙钙华水体藻多样性及分布规律研究[J].环境科学与技术, 2013, 36(1): 182-186.
    [17]
    李刚. 高原冷水环境黄龙典型硅藻的钙华复合沉积作用研究[D]. 绵阳:西南科技大学, 2018.
    [18]
    张存凯. 黄龙藻类群落结构分析及优势类群对碳酸钙沉积的影响[D]. 绵阳:西南科技大学, 2017.
    [19]
    李华举, 廖长君, 姜殿强, 等.钙华沉积机制的研究现状及展望[J]. 中国岩溶, 2006, 25(1):57-62.
    [20]
    De Yoreo J J, Gilbert P U, Sommerdijk N A, et al. Crystallization by particle attachment in synthetic,biogenic, and geologic environments[J]. Science, 2015,349: 6760.
    [21]
    Greer H, Zhou W, Guo L. Reversed Crystal Growth of Calcite in Naturally Occurring Travertine Crust[J]. Crystals, 2017, 7(2):36.
    [22]
    Pedley M. The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments[J]. Sedimentology, 2014, 61(1):22-40.
    [23]
    Jones B, Renaut R W. Modern Travertine Precipitation At LYsuhóll Hot Springs, LYsuhóll, Iceland: Implications For Calcite Crystal Growth[J]. Journal of Sedimentary Research, 2017, 87(11):1121-1142.
    [24]
    党政. 九寨沟核心遗产点震后应急监测及修复可行性研究[D]. 绵阳:西南科技大学, 2019.
    [25]
    Jones B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354:9-23.
    [26]
    Manzo E, Perri E, Tucker M E. Carbonate deposition in a fluvial tufa system: processes andproducts (Corvino Valley- southern Italy)[J]. Sedimentology, 2012, 59(2):553-577.
    [27]
    Lara ?tajner , Jasminka Kontrec , Branka Njegic′ Dzˇakula, et al. The effect of different amino acids on spontaneous precipitation of calcium carbonate polymorphs[J]. Journal of Crystal Growth, 2018, 486:71-81.
    [28]
    Pokrovsky O S, Golubev S V, Jordan G. Effect of Organic and Inorganic Ligands on Calcite and Magnesite Dissolution Rates at 60°C and 30 atm pCO2[J]. Chem. Geol. 2009, 265:33-43.
    [29]
    李骐言, 李琼芳, 代群威, 等. 黄龙嗜冷细菌胞外琥珀酸组分对碳酸钙矿化的影响[J]. 岩石矿物学杂志, 2013, 32(6):773-781.
    [30]
    Xie A J, Shen Y H, Zhang C Y, et al. Crystal growth of calcium carbonate with various morphologies in different amino acid systems[J].Journal of Crystal Growth,2005,285(3): 436-443.
    [31]
    李骐言. 2株黄龙嗜冷细菌胞外产物对碳酸钙矿化的影响[D]. 绵阳:西南科技大学, 2014.
    [32]
    Pan Y, Zhao X, Sheng Y, et al. Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 297(1-3):198-202
    [33]
    Fernández-Remolar D C, Preston L J, Sánchez-Román M, et al. Carbonate Precipitation under Bulk Acidic Conditions as a Potential Biosignature for Searching Life on Mars[J]. Earth Planet. Sci. Lett. 2012, 351-352: 13-26.
    [34]
    Hunter G K, O'Young J, Grohe B, Karttunen M, Goldberg H A. The Flexible Polyelectrolyte Hypothesis of Protein-biomineral Interaction[J]. Langmuir, 2010, 26, 18639-18646.
    [35]
    Cheng C,YangY H, Chen X, et al. Templating effect of silk fibers in the oriented deposition of aragonite[J]. Chemical Communieations, 2008: 5511-5513.
    [36]
    史家远, 姚奇志, 周根陶. 硅藻细胞壁硅化过程中有机质-矿物的相互作用[J]. 高校地质学报, 2011,17(1):76-85.
    [37]
    Yang L, Zhang X Y, Liao Z J, et al. Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization[J]. J Inorg Biochem, 2003,97:377-383.
    [38]
    杨林, 丁维嘉, 安英格, 等. 以葡聚糖为模板控制合成文石型碳酸钙[J]. 高等学校化学学报, 2004,25(8):1403-1406.
    [39]
    王旭辉,董发勤,李琼芳, 等. 多组分有机质作用下碳酸钙的矿化现象[J]. 岩石矿物学杂志, 2020, 39(3):291-297.
    [40]
    Takahashi K, Doi M, Kobayashi A, et al. Formation of 6-, 7-or 8-membered ring intra-side-chain NHO hydrogen bond toward Ca-binding oxyanion in poly(allylaminocarboxylate) ligands stabilizes CaCO3 vaterite crystals[J].Journal of Crystal Growth, 2004, 263(1-4):552-563.
    [41]
    Yang Qianqian, Nan Zhaodong . Growth of vaterite with novel morphologies directed by a collodion membrane[J]. Materials Research Bulletin, 2010, 45(12):1777-1782.
    [42]
    Meldrum F C, Colfen H. Controlling Mineral Morphologies and Struetures in Biological and Synthetic Systems[J]. Chemieal Reviews, 2008, 108:4332-4432.
    [43]
    马在强. 碳酸钙晶型调控及机理研究[D]. 大庆:东北石油大学, 2019.
    [44]
    Mann S, Biomineralization Principles and Concepets in Bioinorganic Materials Chemistry[M]. New York:Oxford University Press, 2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1717) PDF downloads(209) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return