Citation: | DONG Faqin, ZHENG Fei, DAI Qunwei, LI Qiongfang, CHEN Yuheng, LIU Mingxue, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Alper Baba, Andelka Plenkovic-Moraj. Preliminary study on nanometer growth process and regulatory mechanism of travertine nonclassical deposition- A case study of travertine in Jiuzhaigou valley and Huanglong region[J]. CARSOLOGICA SINICA, 2021, 40(1): 55-67. doi: 10.11932/karst20210106 |
[1] |
R. Sandya Rani , Moumita Saharay . Molecular dynamics simulation of protein mediated biomineralization of amorphous calcium carbonate[J]. RSC Adv., 2019, 9:1653-1663.
|
[2] |
Wei Li, Liping Liu, Weishan Chen, et al. Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors[J]. Process Biochemistry, 2010, 45:1017-1021.
|
[3] |
Pouget EM, pH Bomans , JACM Goos, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 5920(323):1455-1458.
|
[4] |
Ozaki N, Sakuda S, Nagasawa H. A novel highly acidic polysaccharide with inhibitory activity on calcification from the calcified scale “coccolith” of a coccolithophoridalga, Pleurochrysis haptonemofera[J]. Biochem Biophys Res Commun, 2007, 357:1172-1176.
|
[5] |
Hayashi S, Ohkawa K, Suwa Y, et al. Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine[J]. Macromol Biosci,2008, 8:46-59.
|
[6] |
汪智军, 殷建军, 蒲俊兵, 等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6):606-617.
|
[7] |
Tong H, Ma W T, Wang L L, et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process[J]. Biomaterials, 2004, 25:3923-3929.
|
[8] |
Li Tianxiao, Hu Yulan, Zhang Bingjian. Biomineralization induced by colletotrichum acutatum: A potential strategy for cultural relic bioprotection[J].Frontiers in Microbiology, 2018, 9:1884-1892.
|
[9] |
Yang Mingjun, Stipp SLS, Harding J. Biological control on calcite crystallization by polysaccharides[J]. Crystal Growth & Design, 2008, 8(11): 4066-4074.
|
[10] |
王建萍, 李琼芳, 董发勤, 等. 3种常见细菌胞外特征有机酸对方解石的溶蚀研究[J]. 岩石矿物学杂志, 2015, 34(3):387-392.
|
[11] |
陈超, 李琼芳, 张清明, 等. 低温环境下两种氨基酸对碳酸钙矿化影响的研究[J]. 高校地质学报, 2017, 23(4):606-614.
|
[12] |
于璐嘉, 李琼芳, 陈超, 等. 黄龙嗜冷细菌两种胞外单糖对碳酸钙矿化影响[J]. 岩石矿物学杂志, 2018, 37(3):395-403.
|
[13] |
李琼芳, 何鑫, 陈超, 等. 两株嗜冷碳酸钙矿化菌对大理石表面修复效果研究[J]. 人工晶体学报, 2018, 47(1):172-178.
|
[14] |
李琼芳, 董发勤, 李骐言等. 柠檬酸对黄龙碳酸钙矿化影响的模拟实验研究[J]. 岩石矿物地球化学通报,2015, 34(2):294-300.
|
[15] |
张文静, 李琼芳, 张存凯, 等. 嗜冷型产碳酸酐酶菌对碳酸钙沉积的影响[J]. 环境科学与技术,2016, 39(3):1-5.
|
[16] |
刘明学, 董发勤, 孙仕勇, 安德军, 易伟, 等. 黄龙钙华水体藻多样性及分布规律研究[J].环境科学与技术, 2013, 36(1): 182-186.
|
[17] |
李刚. 高原冷水环境黄龙典型硅藻的钙华复合沉积作用研究[D]. 绵阳:西南科技大学, 2018.
|
[18] |
张存凯. 黄龙藻类群落结构分析及优势类群对碳酸钙沉积的影响[D]. 绵阳:西南科技大学, 2017.
|
[19] |
李华举, 廖长君, 姜殿强, 等.钙华沉积机制的研究现状及展望[J]. 中国岩溶, 2006, 25(1):57-62.
|
[20] |
De Yoreo J J, Gilbert P U, Sommerdijk N A, et al. Crystallization by particle attachment in synthetic,biogenic, and geologic environments[J]. Science, 2015,349: 6760.
|
[21] |
Greer H, Zhou W, Guo L. Reversed Crystal Growth of Calcite in Naturally Occurring Travertine Crust[J]. Crystals, 2017, 7(2):36.
|
[22] |
Pedley M. The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments[J]. Sedimentology, 2014, 61(1):22-40.
|
[23] |
Jones B, Renaut R W. Modern Travertine Precipitation At LYsuhóll Hot Springs, LYsuhóll, Iceland: Implications For Calcite Crystal Growth[J]. Journal of Sedimentary Research, 2017, 87(11):1121-1142.
|
[24] |
党政. 九寨沟核心遗产点震后应急监测及修复可行性研究[D]. 绵阳:西南科技大学, 2019.
|
[25] |
Jones B. Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354:9-23.
|
[26] |
Manzo E, Perri E, Tucker M E. Carbonate deposition in a fluvial tufa system: processes andproducts (Corvino Valley- southern Italy)[J]. Sedimentology, 2012, 59(2):553-577.
|
[27] |
Lara ?tajner , Jasminka Kontrec , Branka Njegic′ Dzˇakula, et al. The effect of different amino acids on spontaneous precipitation of calcium carbonate polymorphs[J]. Journal of Crystal Growth, 2018, 486:71-81.
|
[28] |
Pokrovsky O S, Golubev S V, Jordan G. Effect of Organic and Inorganic Ligands on Calcite and Magnesite Dissolution Rates at 60°C and 30 atm pCO2[J]. Chem. Geol. 2009, 265:33-43.
|
[29] |
李骐言, 李琼芳, 代群威, 等. 黄龙嗜冷细菌胞外琥珀酸组分对碳酸钙矿化的影响[J]. 岩石矿物学杂志, 2013, 32(6):773-781.
|
[30] |
Xie A J, Shen Y H, Zhang C Y, et al. Crystal growth of calcium carbonate with various morphologies in different amino acid systems[J].Journal of Crystal Growth,2005,285(3): 436-443.
|
[31] |
李骐言. 2株黄龙嗜冷细菌胞外产物对碳酸钙矿化的影响[D]. 绵阳:西南科技大学, 2014.
|
[32] |
Pan Y, Zhao X, Sheng Y, et al. Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 297(1-3):198-202
|
[33] |
Fernández-Remolar D C, Preston L J, Sánchez-Román M, et al. Carbonate Precipitation under Bulk Acidic Conditions as a Potential Biosignature for Searching Life on Mars[J]. Earth Planet. Sci. Lett. 2012, 351-352: 13-26.
|
[34] |
Hunter G K, O'Young J, Grohe B, Karttunen M, Goldberg H A. The Flexible Polyelectrolyte Hypothesis of Protein-biomineral Interaction[J]. Langmuir, 2010, 26, 18639-18646.
|
[35] |
Cheng C,YangY H, Chen X, et al. Templating effect of silk fibers in the oriented deposition of aragonite[J]. Chemical Communieations, 2008: 5511-5513.
|
[36] |
史家远, 姚奇志, 周根陶. 硅藻细胞壁硅化过程中有机质-矿物的相互作用[J]. 高校地质学报, 2011,17(1):76-85.
|
[37] |
Yang L, Zhang X Y, Liao Z J, et al. Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization[J]. J Inorg Biochem, 2003,97:377-383.
|
[38] |
杨林, 丁维嘉, 安英格, 等. 以葡聚糖为模板控制合成文石型碳酸钙[J]. 高等学校化学学报, 2004,25(8):1403-1406.
|
[39] |
王旭辉,董发勤,李琼芳, 等. 多组分有机质作用下碳酸钙的矿化现象[J]. 岩石矿物学杂志, 2020, 39(3):291-297.
|
[40] |
Takahashi K, Doi M, Kobayashi A, et al. Formation of 6-, 7-or 8-membered ring intra-side-chain NHO hydrogen bond toward Ca-binding oxyanion in poly(allylaminocarboxylate) ligands stabilizes CaCO3 vaterite crystals[J].Journal of Crystal Growth, 2004, 263(1-4):552-563.
|
[41] |
Yang Qianqian, Nan Zhaodong . Growth of vaterite with novel morphologies directed by a collodion membrane[J]. Materials Research Bulletin, 2010, 45(12):1777-1782.
|
[42] |
Meldrum F C, Colfen H. Controlling Mineral Morphologies and Struetures in Biological and Synthetic Systems[J]. Chemieal Reviews, 2008, 108:4332-4432.
|
[43] |
马在强. 碳酸钙晶型调控及机理研究[D]. 大庆:东北石油大学, 2019.
|
[44] |
Mann S, Biomineralization Principles and Concepets in Bioinorganic Materials Chemistry[M]. New York:Oxford University Press, 2001.
|