• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
DONG Faqin, LI Gang, DAI Qunwei, ZHOU Lin, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Enrico Capezzuoli, Mike O'Driscoll, Andelka Plenkovic-Moraj. Biological effects on travertine forming in Xuebaoding drainage basin region[J]. CARSOLOGICA SINICA, 2021, 40(1): 11-18. doi: 10.11932/karst20210102
Citation: DONG Faqin, LI Gang, DAI Qunwei, ZHOU Lin, WANG Fudong, ZHAO Xueqin, JIANG Zhongcheng, ZHANG Qiang, LI Bowen, Enrico Capezzuoli, Mike O'Driscoll, Andelka Plenkovic-Moraj. Biological effects on travertine forming in Xuebaoding drainage basin region[J]. CARSOLOGICA SINICA, 2021, 40(1): 11-18. doi: 10.11932/karst20210102

Biological effects on travertine forming in Xuebaoding drainage basin region

doi: 10.11932/karst20210102
  • Publish Date: 2021-02-25
  • Travertine not only has significantly ornamental value of landscape, but also has important research significance to determine the sedimentation law and environmental evolution of travertine and the role and contribution of environmental organisms in the same period. Based on the comparison of characteristics of typical travertine at home and abroad,this paper takes travertine in Huanglong and Jiuzhaigou region as examples to illustrate the sedimentation characteristics, environmental chemistry and biological effects of travertine in Xuebaoding drainage basin,and points out that the formation and evolution of cold water type travertine in Xuebaoding drainage basin are the results of the conbined effects of chemical sedimentation-dissolution, biogeochemistry, biogenic sedimentation-dissolution, which are affected by non-biological and biological factors. In the formation process of cold-water travertine in Xuebaoding drainage basin, microorganisms participate in the sedimentation and dissolution process of travertine, promote the crystallization of calcium ions by metabolism, and induce the change of crystal form. Other organisms such as plants and algae either promote or accelerate the formation of travertine in an indirect way, or provide a template and volume for the growth of travertine.

     

  • loading
  • [1]
    龚雪梅. 岷江上游植被生产力变化及其与气候和人类活动的关系研究[D]. 成都:成都信息工程大学,2018.
    [2]
    刘海生, 周训, 张彧齐,等. 温泉钙华沉积的影响因素[J]. 中国岩溶, 2020, 39(1): 11-16.
    [3]
    韦跃龙, 李成展, 陈伟海, 等. 广西岩溶景观特征及其形成演化分析 [J]. 广西科学, 2018, 25(5): 465-504.
    [4]
    伊然. 钙华梯田——瑰丽的自然奇观[J]. 石油知识, 2018(4): 8-9.
    [5]
    吴驰华, 伊海生, 惠博, 等. 一种包覆颗粒沉积新类型: 鲕状泉华[J]. 中国科学: 地球科学, 2014, 44(11): 2406.
    [6]
    李刚. 高原冷水环境黄龙典型硅藻的钙华复合沉积作用研究[D]. 绵阳:西南科技大学,2018.
    [7]
    李刚, 董发勤, 代群威,等. 黄龙钙华有机碳测定方法的对比研究[J]. 岩石矿物学杂志, 2018, 37(1):152-160.
    [8]
    董发勤,李琼芳,代群威,等. 黄龙风景区和黄石公园钙华形成环境对比研究[A]. //中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C].中国矿物岩石地球化学学会:2013:2.
    [9]
    Chafetz H S. Travertines; depositional morphology and the bacterially constructed constituents[J]. J Sediment Petrol, 2011, 54(1):289-316.
    [10]
    Jingan Chen, David Dian Zhang, Shijie Wanga , et al. Factors controlling tufa deposition in natural waters at waterfall sites[J]. Sedimentary Geology, 2004, 166(3-4): 353-366.
    [11]
    O"Brien G R , Kaufman D S , Sharp W D , et al. Oxygen isotope composition of annually banded modern and mid-Holocene travertine and evidence of paleomonsoon floods, Grand Canyon, Arizona, USA[J]. Quaternary Research, 2017, 65(3):366-379.
    [12]
    甘建军, 郑黎明. 四川九寨沟—黄龙核心景区景观地质环境和水循环系统研究[J]. 四川地质学报, 2007(1): 53-56.
    [13]
    晏浩, 刘再华, 邓贵平,等. 四川九寨沟景区钙华起源初探[J]. 中国岩溶, 2013, 32(1): .15-22
    [14]
    Feng L I, Dong X C. Intensification of Tectonic Movement since The Cenozoic and Its Effect on Geological Environment in Northwestern Yunnan, China[J]. Geotectonica Et Metallogenia, 2000(1):1-9.
    [15]
    李强, 戴亚南, 游省易,等. 云南白水台钙华沉积成因及主要沉积类型研究[J]. 中国岩溶, 2002, 21(3):178-181.
    [16]
    Yesertener C, Elhatip H. Evaluation of Groundwater Flow by Means of Dye-Tracing Techniques, Pamukkale Thermal Springs, Western Turkey[J]. Hydrogeology Journal, 1997, 5(4):51-59.
    [17]
    Dilsiz C, Marques J M, Carreira P M M. The impact of hydrological changes on travertine deposits related to thermal springs in the Pamukkale area (SW Turkey)[J]. Environmental Geology, 2004, 45(6):808-817.
    [18]
    刘亚平. 云南省昌宁县鸡飞温泉成因及钙华形成浅析[D]. 北京:中国地质大学(北京), 2009.
    [19]
    Fouke B W, Bonheyo G T, Sanzenbacher B L, et al. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, U.S.A.[J]. Can. J. Earth Sci, 2003, 40: 1531-1548.
    [20]
    Li Q F, Dong F Q, Dai Q W, et al. The Microbial Factor of Travertine Deposition between Yellowstone National Park (YNP), USA and Huanglong Scenic, Sichuan[J]. Advanced Materials Research, 2012, 518: 136-139.
    [21]
    Shi Z J, Shi Z M, Yin G, et al. Travertine deposits, deep thermal metamorphism and tectonic activity in the Longmenshan tectonic region, southwestern China[J]. Tectonophysics, 2014: 156-163.
    [22]
    Golubic S, Campbell S E. Analogous microbial forms in recent subaerial habitats and in Precambrian cherts: Gloethece coerulea, Geitler and Eosynechococcus moorei, Hofmann[J]. Precambrian Research, 1979, 8(3-4):201-217.
    [23]
    Henry S. Chafetz, Robert L. Folk. Travertines: Depositional Morphology and the Bacterially Constructed Constituents[J]. Journal of Sedimentary Petrology, 1984, 54(1): 289-316.
    [24]
    Inskeep W P, Rusch D B, Jay Z J, et al. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function[J]. PLoS ONE, 2010(5): 1-15.
    [25]
    周绪纶. 关于四川黄龙钙华CO2成因的讨论[J]. 四川地质学报, 2006, 26 (3): 143-146.
    [26]
    刘再华, 曹云, 等. 四川黄龙沟天然水中的深源CO_2与大规模的钙华沉积[J]. 地球与环境, 2005(2): 1-10.
    [27]
    刘再华. 再论黄龙钙华的成因——回应周绪纶先生“黄龙钙华是热成因还是冷成因:高寒岩溶气源之一”一文[J] . 中国岩溶, 2008, 27(4): 388-390.
    [28]
    刘再华, 田友萍, 安德军, 等.世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报, 2009, 30(6): 841-847.
    [29]
    万新南, 杨菊, 程温莹, 等. 四川黄龙景区“源水”成因浅析[J]. 成都理工大学学报(自然科学版), 2010, 37(1): 91-95.
    [30]
    杨俊义, 万新南, 席彬, 等. 九寨沟黄龙地区钙华漏斗的特征与成因探讨[J]. 水文地质工程地质, 2004 (2): 90-93.
    [31]
    唐淑, 张清明, 台永东, 等. 黄龙景区多年水量动态变化情况调查分析[J]. 环境与可持续发展, 2016, 41(4): 209-210.
    [32]
    尹观,范晓,郭建强,等.四川九寨沟水循环系统的同位素示踪[J].地理学报,2000,55(4):487-494.
    [33]
    尹观,倪师军,张其春.氘过量参数及其水文地质学意义以四川九寨沟和冶勒水文地质研究为例[J].成都理工学院学报,2001,28(3):251-254.
    [34]
    甘建军,刘民生,黄润秋,等.九寨沟核心景区水循环系统研究[J].水文地质工程地质,2010,37(1):34-39.
    [35]
    晏浩, 刘再华. 层状钙华及其地球化学指标的古气候/环境意义[J]. 第四纪研究, 2011, 31(1):88-95.
    [36]
    姜泽凡, 刘艳梅, 胥良. 黄龙钙华景观形成及演化趋势研究[J]. 水文地质工程地质, 2008(1): 107-116.
    [37]
    刘再华, 田友萍, 安德军, 等. 世界自然遗产——四川黄龙钙华景观的形成与演化[J]. 地球学报. 2009, 30(6): 841-847.
    [38]
    代群威, 张清明, 党政,等. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J]. 矿物学报, 2019, 39(2):219-225.
    [39]
    刘明学,董发勤,孙仕勇,等. 黄龙钙华水体藻多样性及分布规律研究[J]. 环境科学与技术,2013,36(1): 182-186.
    [40]
    廖长君. 钙华沉积的生物效应[D]. 桂林:广西师范大学, 2006.
    [41]
    李骐言,李琼芳,代群威,等. 黄龙嗜冷细菌胞外琥珀酸组分对碳酸钙矿化的影响[J]. 岩石矿物学杂志,2013,32,(6),773-781.
    [42]
    李骐言,李琼芳,王建萍,等. 2株分离自黄龙冷水型水体中土著细菌的胞外有机酸代谢组分分析[J]. 江苏农业科学,2014,42(6):274-277.
    [43]
    Sanchez-Moral S, Portillo M C, Janices I, et al. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave[J]. Geomorphology, 2012, s 139-140(4):285-292.
    [44]
    Kim J, Kogure T, Yang K, et al. The Characterization of Caco3 in a Geothermal Environment: a SEM/TEM-EELS study[J]. Clays & Clay Minerals, 2012, 60(12):484-495.
    [45]
    Sun S, Dong F, Ehrlich H, et al. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China[J]. International journal of environmental research and public health, 2014, 11(12): 13084-13096.
    [46]
    Xie J, Strobel G, Xu W F, et al. Fungi as Architects of the Rimstone Dams in Huanglong, NSD, Sichuan, China[J]. Microbial Ecology, 2016:1-10.
    [47]
    辜寄蓉, 范立学, 范晓. 基于灰色系统的黄龙钙华景观演化研究[J]. 中国地质, 2007, 34(6):1148-1153.
    [48]
    王振荣, 兰江华. 世界自然遗产黄龙钙华景观的地质分析[C]// 海峡两岸山地灾害与环境学术研讨会, 2009:1-8.
    [49]
    Dong F Q, Huang Z Y, Tan H B, et al. Effect of Additives on Calcium Sulfate Hemihydrate Whiskers Morphology from Calcium Sulfate Dehydrate and Phosphogypsum[J]. Materials and Manufacturing Processes, 2016, 31(15): 2037-2043.
    [50]
    Zhao X Q, Wang F D, Verheyden S, et al. Earthquake-related speleothem damages: observations from the 2008 Mw 7.9 Wenchuan, China[J], Geomorphology, 2020, 358(2020):107130.
    [51]
    Pan L, Li Q F, Zhou Y, et al. Effects of different calcium sources on the mineralization and sand curing of CaCO3 by carbonic anhydrase-producing bacteria[J]. RSC Advances, 2019, 9: 40827-40834.
    [52]
    Wang F D, Dong F Q, Zhao X Q, et al. The large dendritic fissures of travertine dam exposed by Jiuzhaigou earthquake, Sichuan, southwestern China[J]. International Journal of Earth Sciences, 2018, 107(8): 2785-2786.
    [53]
    Wang F D, Dong F Q, Zhao X Q, et al. The Lowest Boundary Age of Travertine in Dawanzhangjia Ravine, Huanglong, China[J]. Acta Geologica Sinica (English Edition), 2018, 92(2): 879-880.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1792) PDF downloads(265) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return