• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 40 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. CARSOLOGICA SINICA, 2021, 40(1): 4-10. doi: 10.11932/karst20210101
Citation: JIANG Zhongcheng, DAI Qunwei, DONG Faqin, ZHANG Qiang, DANG Zheng, WANG Zhijun, LIU Fan. Review of research progress and prospect of tufa/travertine karst landscape at home and abroad[J]. CARSOLOGICA SINICA, 2021, 40(1): 4-10. doi: 10.11932/karst20210101

Review of research progress and prospect of tufa/travertine karst landscape at home and abroad

doi: 10.11932/karst20210101
  • Publish Date: 2021-02-25
  • A scientometric analysis in Citespace software on the published papers of tufa/ travertine researches at home and abroad from 2008-2020 shows that, some researches of tufa/travertine such as, formation causes of tufa/travertine based on isotope technology, landscape features and geomorphologic evolution of tufa/travertine, biological causes of tufa/travertine and landscape degeneration of tufa/travertine have gotten important progresses. Moreover, the distribution, landscape features, material composition, formation types and situation and causes of typical tufa/travertine in the world have been well clarified, which push forward the conversation and international co-operation of tufa/travertine natural heritage as well as the protection of tufa/travertine natural heritage landscapes . At present, some important basic researches such as mutual processes between earth thermal dynamics and surface dynamics, coupling processes between microorganism and tufa/travertine deposition, as well as micro structures of tufa/travertine degeneration should be strengthened urgently. Meanwhile, the key technology of ecological rehabilitation and conservation of tufa/travertine should be developed.

     

  • loading
  • [1]
    袁道先主编.岩溶学词典[M].北京:地质出版社,1988.
    [2]
    Ford T D,Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews,1996,41(3/4):117-175.
    [3]
    胥良, 姜泽凡, 李前银, 等. 黄龙钙华景观演化特征及保护措施探讨[J]. 地质灾害与环境保护, 2007, 18(4):79-84.
    [4]
    刘再华, 田友萍, 安德军, 等. 世界自然遗产-四川黄龙钙华景观的形成与演化[J]. 地球学报, 2009, 30(6): 841-847
    [5]
    李强,戴亚南,游省易,等.云南白水台钙华沉积成因及主要沉积类型研究[J].中国岩溶,2002,21(3):178-181.
    [6]
    Pentecost A. Travertine[M]. Berlin:Springer Berlin, 2005.
    [7]
    董发勤,李琼芳,代群威,等. 黄龙风景区和黄石公园钙华形成环境对比研究[A]. 《中国矿物岩石地球化学学会第14届学术年会论文摘要专辑》,2013.
    [8]
    Pedley H M. Classification and environmental models of cool freshwater tufas[J]. Sedimentary Geology, 1990, 68(1):143-154.
    [9]
    Pedley M. Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments[J]. Sedimentology, 2009, 56(1):221-246.
    [10]
    Capezzuoli E, Gandin A, Pedley M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art[J]. Sedimentology, 2014, 61(1):1-21.
    [11]
    Chen Chaomei, Hu Zhigang, Liu Shengbo, et al. Emerging trends in regenerative medicine:a scientometric analysis in citespace[J].Expert Opinion on Biological Therapy, 2012, 12(5): 593-608.
    [12]
    Craig H.The geochemistry of the stable carbon isotopes[J] .Geochimica et Cosmochimica Acta, 1953, 3:53-92.
    [13]
    刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来源:以四川黄龙沟、康定和云南中甸下给为例[J].中国科学(D辑:地球科学),2000,30(2):209-214.
    [14]
    刘再华.表生和内生钙华的气候环境指代意义研究进展[J].科学通报,2014,59(23): 2229-2239.
    [15]
    周绪纶.关于四川黄龙钙CO2成因的讨论[J],四川地质学报,2006,26(3):143-146.
    [16]
    Ball J W, Mccelskey R B,Nordstrom D K, et al. Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2003-2005, US [R]. Geological Survey Open-File Report, 2006.
    [17]
    汪智军, 殷建军, 袁道先. 钙华在第四纪研究中的应用:以青藏高原为例[J]. 科学通报, 2018, 63(11): 1012-1023.
    [18]
    Brian Jones . Review of aragonite and calcite crystal morphogenesis in thermal spring systems[J]. Sedimentary Geology, 2017, 354:9-23.
    [19]
    Okumura T, Takashima C, Shiraishi F, et al. Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia[J]. Sedimentary Geology, 2012, 265:195-209.
    [20]
    Brogi Andrea, Liotta Domenico, Capezzuoli Enrico,et al. Travertine deposits constraining transfer zone neotectonics in geothermal areas: An example from the inner Northern Apennines (Bagno Vignoni-Val d’Orcia area, Italy)[J].Geothermics,2020, 85.
    [21]
    Viles H A, Taylor M P, Nicoll K, et al. Facies evidence of hydroclimatic regime shifts in tufa depositional sequences from the arid Naukluft Mountains, Namibia[J]. Sedimentary Geology, 2007, 195(1):39-53.
    [22]
    Andrews J E, Brasier A T. Seasonal records of climatic change in annually laminated tufas: Short review and future prospects[J]. Journal of Quaternary Science, 2005, 20(5):411-421.
    [23]
    Marcelle Marques Erthal, Enrico Capezzuoli , Alessandro Mancini , et al. Shrub morpho-types as indicator for the water flow energy-Tivoli travertine case (Central Italy)[J]. Sedimentary Geology, 2017, 347:79-99.
    [24]
    Pedley M, Juan Antonio González Martín, Salvador Ordó?ez Delgado, et al. Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain[J]. Sedimentology, 2003, 50(1):23-44.
    [25]
    álvaro Rodríguez-Berriguete, Ana María Alonso-Zarza. Controlling factors and implications for travertine and tufa deposition in a volcanic setting[J]. Sedimentary Geology, 2019,381: 13-28.
    [26]
    Huerta P , Armenteros I , Merino Tomé , Oscar, et al. 3-D modelling of a fossil tufa outcrop. The example of La Pea del Manto (Soria, Spain)[J]. Sedimentary Geology, 2016, 333:130-146.
    [27]
    Marta Vázquez-Urbez , Arenas C, Pardo G. A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): the Quaternary Piedra and Mesa valleys[J]. Sedimentology, 2012, 59(2):502-526.
    [28]
    Claes H, Soete J, Van Noten K, et al. Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballk area (south-west Turkey)[J]. Sedimentology, 2015, 62(5):1408-1445.
    [29]
    Boever E D, Foubert A, Lopez B, et al. Comparative study of the Pleistocene Cakmak quarry (Denizli Basin, Turkey) and modern Mammoth Hot Springs deposits (Yellowstone National Park, USA)[J]. Quaternary International, 2017,437:129-146.
    [30]
    Han L, Cheng J, An Y, et al. Preliminary Report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, Earthquake[J]. Seismological Research Letters, 2018,89(2A):557-569.
    [31]
    李志强, 李亦纲, 林均岐. 四川九寨沟7.0级地震灾害特点分析[J]. 中国应急救援, 2017(5): 4-7.
    [32]
    Wang W, Chen H, Xu A, et al. Analysis of disaster characteristics and emergency response of the Jiuzhaigou earthquake[J]. Natural Hazards and Earth System Sciences,2018,18(6): 1771-1783.
    [33]
    姜泽凡,刘艳梅,胥良.黄龙钙华景观形成及演化趋势研究[J].水文地质工程地质, 2008,35(1):107-111,116.
    [34]
    张金流,王海静,董立,等.世界遗产-四川黄龙钙华景观退化现象、原因及保护对策分析[J].地球学报,2012,33(1):111-120.
    [35]
    Chafetz H S, Folk R L. Travertines: depositional morphology and the bacterially constructed constituents[J]. JOURNAL OF SEDIMENTARY PETROLOGY, 1984,54:289-316.
    [36]
    Pedley H M. Freshwater(phytoherm)reefs : The role of biofilms and their bearing on matine reef sedimentation[J]. Sedimentary Geology, 1992, 79(1-4):255-274.
    [37]
    Pedley M, Rogerson M, Middleton R. Freshwater calcite precipitates from in vitro mesocosm flume experiments: a case for biomediation of tufas.[J]. Sedimentology, 2010, 56(2):511-527.
    [38]
    Perri E, Manzo E, Tucker M E. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa[J]. Sedimentary Geology, 2012,263-264:16-29.
    [39]
    Berrendero E, Arenas C, Mateo P, et al. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain)[J]. Sedimentary Geology, 2016, 337:12-28.
    [40]
    Arp G, Wedemeyer N, Reitner J. Fluvival tufa formation in a hard-water creek (Deinschwanger Bach, Franconian Alb, Germany)[J]. Facies, 2001, 44(1):1-22.
    [41]
    刘明学,董发勤,孙仕勇,等. 黄龙钙华水体藻多样性及分布规律研究[J]. 环境科学与技术,2013,36(1): 182-186.
    [42]
    Bissett A, Beer D D, Schoon R, et al. Microbial mediation of stromatolite formation in karst water creeks[J]. Limnology & Oceanography, 2008, 53(3):1159-1168.
    [43]
    李骐言,李琼芳,代群威,等. 黄龙嗜冷细菌胞外琥珀酸组分对碳酸钙矿化的影响[J]. 岩石矿物学杂志,2013,32(6):773-781.
    [44]
    Jin-Wook Kim, Toshihiro Kogure, Sang-tae Kim, et al. The Characterization of CaCO3 in a Geothermal Environment: a SEM/TEM-EELS study[J]. Clays and Clay Minerals, 2012, 60(5): 484-495.
    [45]
    Sun S, Dong F, Ehrlich H, et al. Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China[J]. International journal of environmental research and public health, 2014, 11(12): 13084-13096.
    [46]
    Xie J, Strobel G, Xu W F, et al. Fungi as Architects of the Rimstone Dams in Huanglong, NSD, Sichuan, China[J]. Microbial Ecology, 2017,73(1):1-10.
    [47]
    代群威,党政,彭启轩,等. 钙华天然海绵地质体多孔特性及其对水循环调节意义:以四川黄龙为例[J].矿物学报,2019,39(2):219-225.
    [48]
    Wang H, Liu Z, Zhang J, et al. Spatial and temporal hydrochemical variations of the spring-fed travertine-depositing stream in the Huanglong Ravine, Sichuan, SW China[J]. Acta Carsologica, 2010, 39(2):247-259.
    [49]
    石岩. 黄龙水环境特征与钙华景观演化趋势研究[D]. 成都: 成都理工大学, 2005.
    [50]
    朱静. 黄龙钙华沉积速率及景观演化研究[D]. 成都: 成都理工大学, 2009.
    [51]
    杨俊义.九寨沟黄龙地区景观钙华的特征与成因探讨[D]. 成都:成都理工大学, 2004.
    [52]
    唐淑, 张清明, 台永东,等. 黄龙景区多年水量动态变化情况调查分析[J]. 环境与可持续发展, 2016, 41(4):209-210.
    [53]
    Wang L , Pan Y , Cao Y , et al. Detecting early signs of environmental degradation in protected areas: An example of Jiuzhaigou Nature Reserve, China[J]. Ecological Indicators, 2018, 91:287-298.
    [54]
    Liu J. Ecological Degradation in Protected Areas: The Case of Wolong Nature Reserve for Giant Pandas[J]. Science, 2001, 292(5514):98-101.
    [55]
    张金流. 黄龙钙华景观退化的人为和自然影响机理研究[D]. 北京:中国科学院研究生院, 2012.
    [56]
    陈超. 生物有机质对黄龙钙华沉积和退化的影响研究[D].绵阳:西南科技大学, 2018.
    [57]
    Zhang J , Wang H , Liu Z , et al. Spatial-temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China-A world’s heritage site[J]. Applied Geochemistry, 2012, 27(1):211-222.
    [58]
    李永新,田友萍,李银. 四川黄龙钙华藻类及其生物岩溶作用[J].中国岩溶,2011, 30(1): 86-92.
    [59]
    张金流,王海静,刘再华.旅游活动对黄龙景区磷酸盐浓度和水藻生长的影响[J]. 地球学报,2011,32(4):463-468.
    [60]
    Qiao X , Du J , Kota S H , et al. Wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan, China during 2015-2016: Possible effects from regional emission reduction and local tourist activities[J]. Environmental Pollution, 2018, 233:67-77.
    [61]
    Qiao X , Tang Y , Jaffe D , et al. Surface ozone in Jiuzhaigou National Park, eastern rim of the Qinghai-Tibet Plateau, China[J]. Journal of Mountain Science, 2012, 9(5):687-696.
    [62]
    胥良,姜泽凡.基于钙均衡估算黄龙钙华沉积速率的探讨[J].中国岩溶,2007, 26(2):132-136.
    [63]
    汪智军,殷建军,蒲俊兵,等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进 展,2019,34(6):606-617.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1848) PDF downloads(367) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return