Citation: | ZHOU Aihong, NIU Pengfei, YUAN Ying, HUANG Hucheng. Prediction of karst surface subsidence risk in the Fankou lead-zinc mine area based on PCA-PSO-SVM[J]. CARSOLOGICA SINICA, 2020, 39(4): 622-628. doi: 10.11932/karst2020y30 |
[1] |
蒙彦,雷明堂.岩溶塌陷研究现状及趋势分析[J].中国岩溶,2019,38(3):411-417.
|
[2] |
秦佳玉,梅钢,徐能雄.面向采空塌陷离散元模拟的地表沉降确定方法[J].矿业研究与开发,2019,39(9):46-50.
|
[3] |
Liu Z, Cui B, Liang Y, et al. Study on Foundation Deformation of Buildings in Mining Subsidence Area and Surface Subsidence Prediction [J]. Geotechnical and Geological Engineering, 2019, 37(3): 1755-1764.
|
[4] |
罗周全,徐海,杨彪,王益伟.矿区岩溶地表塌陷神经网络预测研究[J].中国地质灾害与防治学报,2011,22(3):39-44.
|
[5] |
周泽.岩溶矿区采动裂隙发育及其地表塌陷规律研究[D].湘潭:湖南科技大学,2017.
|
[6] |
He K, Jia Y, Chen W, et al. Evaluation of Karst Collapse Risks Induced By Over-pumping and Karst Groundwater Resource Protection in Zaozhuang Region, China[J]. Environmental Earth Sciences, 2014, 71(8): 3443-3454.
|
[7] |
Gan L, Zuo J, Wang Y, et al. Comprehensive Health Condition Assessment on Partial Sewers in a Southern Chinese City Based on Fuzzy Mathematic Methods [J]. Frontiers of Environmental Science & Engineering, 2014, 8(1): 144-150.
|
[8] |
Gao C, Li S, Wang J, et al. The Risk Assessment of Tunnels Based on Grey Correlation and Entropy Weight Method [J]. Geotechnical and Geological Engineering, 2018, 36(3): 1621-1631.
|
[9] |
Du J, He R, Sugumaran V. Clustering and Ontology-based Information Integration Framework for Surface Subsidence Risk Mitigation in Underground Tunnels[J]. Cluster Computing, 2016, 19(4): 2001-2014.
|
[10] |
Sahu SP, Yadav M, Das AJ, et al. Multivariate Statistical Approach for Assessment of Subsidence in Jharia Coalfields, India[J]. Arabian Journal of Geosciences, 2017, 10(8): 191-201.
|
[11] |
Han D, Li X. The Surface Subsidence Prediction of Shield Construction Based on the Fuzzy Neural Network[C]. Springer Singapore, 2018: 190-197.
|
[12] |
管佳林,罗周全,杨彪,等.矿区岩溶地表塌陷神经网络预测模型研究[J].中国安全科学学报,2011,21(9):28-33.
|
[13] |
Salehi T, Shokrian M, Modirrousta A, et al. Estimation of the Collapse Potential of Loess Soils in Golestan Province Using Neural Networks and Neuro-fuzzy Systems[J]. Arabian Journal of Geosciences, 2015, 8(11): 9557-9567.
|
[14] |
杨斌,杨永军,张亚,等.基于主成分分析与神经网络复合模型的汽轮机排汽焓计算[J].中国电力,2018,51(1):126-132.
|
[15] |
Mondal I, Bandyopadhyay J, Dhara S. Detecting Shoreline Changing Trends Using Principle Component Analysis in Sagar Island, West Bengal, India[J]. Spatial Information Research, 2017, 25(1): 67-73.
|
[16] |
郭天颂,张菊清,韩煜,等.基于粒子群优化支持向量机的延长县滑坡易发性评价[J].地质科技情报,2019,38(3):236-243.
|
[17] |
Yu H. Encyclopedia of Database Systems [M]. Springer New York, 2018: 3854-3857.
|
[18] |
杨彪.矿山地下水害防治工程可视化及地表塌陷预测研究[D].长沙:中南大学,2011.
|
[19] |
韩冉冉.建筑工程施工班组安全氛围测度研究[D].南京:东南大学,2015.
|
[20] |
Mulas M , Bonacini F , Petitta M , et al. Landslide Zoning Using the Principal Component Analysis on Monitoring Data: The Sauna Earth Slide-Earth Flow (Parma, Italy)[C]. Workshop on World Landslide Forum. Springer, Cham, 2017.
|
[21] |
薛云,戴塔根,杨自安,等.基于光谱和纹理的SVM矿化蚀变信息提取研究[J].地质找矿论丛,2008, 23(3):254-259.
|
[22] |
Jiang X, Lu W, Zhao H, et al. Quantitative Evaluation of Mining Geo-environmental Quality in Northeast China: Comprehensive Index Method and Support Vector Machine Models[J]. Environmental Earth Sciences, 2015, 73(12): 7945-7955.
|
[23] |
周爱红, 倪莹莹, 尹超,等.一种盾构施工引起的地面沉降预测方法[J]. 测绘科学, 2018, 43(3):167-172.
|
[24] |
De gregorio L, Callegari M, Mazzoli P, et al. Operational River Discharge Forecasting with Support Vector Regression Technique Applied to Alpine Catchments: Results, Advantages, Limits and Lesson Learned[J]. Water Resources Management, 2018, 32(1): 229-242.
|