• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 39 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
GUO Jingyun, LI Shouding, LI Bin, LI Xiao, BI Xingtao, FANG Ranke. Geological models classification of deformation and failures for collapses and landslides in karst mountainous areas[J]. CARSOLOGICA SINICA, 2020, 39(4): 478-491. doi: 10.11932/karst20200403
Citation: GUO Jingyun, LI Shouding, LI Bin, LI Xiao, BI Xingtao, FANG Ranke. Geological models classification of deformation and failures for collapses and landslides in karst mountainous areas[J]. CARSOLOGICA SINICA, 2020, 39(4): 478-491. doi: 10.11932/karst20200403

Geological models classification of deformation and failures for collapses and landslides in karst mountainous areas

doi: 10.11932/karst20200403
  • Publish Date: 2020-08-25
  • The special engineering hydrology structure in karst mountainous areas results in extremely developed geological disasters such as collapses, landslides and debris flow, which bring about serious casualties and economic and social losses. It is of great theoretical and application values for risk prevention and management in such areas to study characteristics of these hazards and establish corresponding geological models. This article systematically analyzes the geological background, influencing factors and dynamics and kinematics characteristics of collapses and landslides in the study area, and establishes geological models of deformation and failures taking the formation and evolution of typical collapses and landslides as examples. Results show that, (1) the factors that affect and reflect the characteristics of collapses and landslides can be divided into basic factors including gravity potential energy, rock group structure, karst structural planes, slope topography, slope stucture; and influencing factors such as hydrogeological conditions, engineering activities, earthquakes, rainfall and deformation movement characteristics (movement forms and deformation mechanisms). Based on these, a comprehensive index system of collapses and landslides is established. (2) Systematic analyis on each element in the model system suggests that the occurrence of collapse and landslide hazards is the result of the combination and interaction of various elements. (3) Combined with typical cases of collapse and landslide hazards in the study area, five typical geological models are established. They are the high potential energy-anti-dipping-rainfall induced high-speed long-distance landslide-debris flow model, high potential energy-oblique tilting direction-mining induced high-speed long-distance landslide model, ultra-high potential energy-lateral steep seismic induced high-speed long-range landslide model, high potential energy mining induced high-speed collapse-debris flow model, and the low potential energy-differential weathering collapse model. These geological models lay the foundation for subsequent physical simulation, numerical modeling, stability calculation and deformation and failure prediction. The next step is to build more comprehensive models of collapse and landslide hazards in the study area and carry out the risk classification of these hazards.

     

  • loading
  • [1]
    黄润秋,许强,等.中国典型灾难性滑坡[M].北京:科学出版社,2008.
    [2]
    李滨,冯振,张勤,等.岩溶山区特大崩滑灾害成灾模式与早期识别研究[M].北京:科学出版社,2016:23-46.
    [3]
    刘广润,晏鄂川,练操.论滑坡分类[J]. 工程地质学报, 2002,10(4): 339-342.
    [4]
    Varnes D J. Slope movement types and processes[M]//Schuster R L, Krizek R J. Landslides, analysis and control. Washington, DC: Transportation research board, National Academy of Sciences, 1978:11-33.
    [5]
    Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update [J]. Landslides, 2014, 11:167-194.
    [6]
    晏鄂川,刘广润. 试论滑坡基本地质模型[J].工程地质学报,2004,12(1):21-24.
    [7]
    韩行瑞.岩溶水文地质学[M].北京:科学出版社.2015.
    [8]
    中华人民共和国行业标准编写组.工程岩体分级标准[S].北京:中国计划出版社,2014.
    [9]
    施斌,阎长虹.工程地质学[M].北京:科学出版社,2017.
    [10]
    乔建平,吴彩燕, 田宏岭. 长江三峡库区云—巫山段斜坡坡度对滑坡的贡献率[J].山地学报,2007,25(2):207-211.
    [11]
    李智毅,杨裕云.工程地质学概论[M].武汉:中国地质大学出版社,1994.
    [12]
    伍法权.三峡库区高切坡变形破坏机制[M].北京:中国三峡出版社,2010.
    [13]
    李滨,殷跃平,高杨,等.西南岩溶山区大型崩滑灾害研究的关键问题[J].水文地质工程地质,2020,47(4):5-13.
    [14]
    黄润秋, 张伟锋, 裴向军.大光包滑坡工程地质研究[J]. 工程地质学报, 2014,22(4): 557-585.
    [15]
    高杨,贺凯,李壮,等.西南岩溶山区特大滑坡成灾类型及动力学分析[J].水文地质工程地质, 2020,47(4):14-23.
    [16]
    黄润秋, 李渝生, 严明.斜坡倾倒变形的工程地质分析[J]. 工程地质学报, 2017,25(5): 1165-1181.
    [17]
    殷跃平, 朱继良, 杨胜元.贵州关岭大寨高速远程滑坡碎屑流研究[J]. 工程地质学报, 2010,18(4): 445-454.
    [18]
    易连兴.西南岩溶石山区复合水动力场滑坡影响模式:以关岭县大寨滑坡为例[J].水文地质工程地质, 2020,47(4):43-50.
    [19]
    李晓, 张年学, 盛祝平,等. 武隆鸡尾山滑坡发生机制与裂缝成因分析[J].岩石力学与工程学报,2020,39(1):1-12.
    [20]
    许强, 黄润秋, 殷跃平, 等. 2009年6?5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J]. 工程地质学报, 2009,17(4): 433-444.
    [21]
    张伟锋.工程地质研究[D].成都:成都理工大学,2015.
    [22]
    Fan X M, Xu Q, Scaringi G, et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report [J].Landslide, 2019, 16(1):139-154.
    [23]
    肖锐铧, 陈红旗, 冷洋洋, 等. 贵州纳雍“8?28”崩塌破坏过程与变形破坏机理初探[J]. 中国地质灾害与防治学报,2018,29(1):3-9.
    [24]
    郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J]. 工程地质学报, 2018,26(1): 223-240.
    [25]
    黄达,杨伟东,陈智强.考虑软弱基座风化效应的望霞危岩崩塌机制分析[J].人民长江,2018,49(6):64-78.
    [26]
    陈洪凯,王圣娟. 望霞危岩破坏模式及其力学解译[J]. 重庆师范大学学报(自然科学版),2018,35(1):48-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1597) PDF downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return