• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
GAO Yang, QIU Zhenzhong, YU Qingchun. Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. CARSOLOGICA SINICA, 2019, 38(6): 831-838. doi: 10.11932/karst20190601
Citation: GAO Yang, QIU Zhenzhong, YU Qingchun. Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. CARSOLOGICA SINICA, 2019, 38(6): 831-838. doi: 10.11932/karst20190601

Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow

doi: 10.11932/karst20190601
  • Publish Date: 2019-12-25
  • The development process of karst water systems is of great significance to many resource and environmental problems. The issues such as the prediction and exploitation of water resource, oil and gas resources, and the prevention of soil erosion are all closely related to this process. Karst conduits are formed by the gradual dissolution of fractures by groundwater. In the early stage of karstification, the width of the fractures is small and the whole flow field is laminar flow. With the progress of karstification, the flow in some fractures becomes turbulent because of preferential dissolution, and the flow in other fractures remains laminar. This paper presents a numerical method to simulate the karst development of fracture networks with both laminar and turbulent flow. The initial fracture networks are constructed by Monte-Carlo simulation. The groundwater flow is simulated by the discrete fracture network method. The dissolution enlargement of fractures is calculated by the empirical equations of dissolution rate of carbonate rock surface. The nonlinear equation system for the water heads of the flow field, with both laminar and turbulent flow, is solved using the iteration method. The numerical method and software of this work are proved by comparing the calculation results of the analytical and numerical methods.

     

  • loading
  • [1]
    袁道先,章程. 岩溶动力学的理论探索与实践[J]. 地球学报,2008,29(3): 355-365.
    [2]
    袁道先. 新形势下我国岩溶研究面临的机遇和挑战[J]. 中国岩溶,2019,28(4):329-331.
    [3]
    刘再华,岩石风化碳汇研究的最新进展和展望[J]. 科学通报2012,57(2-3):95-102.
    [4]
    蒋忠诚,覃小群,曹建华,等. 中国岩溶作用产生的大气CO2碳汇的分区计算[J]. 中国岩溶, 2011,30(4): 363-367.
    [5]
    张永祥,董英,陈鸿汉,等. 北方半干旱区不同岩溶系统的碳循环研究[J]. 中国岩溶,1997,16(4):296-303.
    [6]
    曹建华,蒋忠诚,袁道先,等. 岩溶动力系统与全球变化研究进展[J]. 中国地质,2017,44(5): 874-900.
    [7]
    蒋忠诚,罗为群,邓艳,等.广西岩溶区的水土流失及其防治[J]. 广西科学,2018,25(5):449-455.
    [8]
    武亚遵,万军伟,林云. 岩溶演化过程中含水介质的时空变化特征研究[J]. 河南理工大学学报(自然科学版), 2015, 34(2): 216-221.
    [9]
    张人权,梁杏,靳孟贵,等.水文地质学基础(第六版)[M]. 北京: 地质出版社, 2011: 141-154.
    [10]
    毛亮,于青春,王敬霞,等. 降雨对裂隙型岩溶含水系统演化影响的数值模拟研究[J]. 中国岩溶, 2017, 36(1): 42-48.
    [11]
    薛亮,于青春. 岩溶水系统演化中河间地块分水岭消失过程的数值模拟分析[J] . 水文地质工程地质, 2009, 36 (2): 7-12.
    [12]
    王云,于青春,薛亮,等. 裂隙岩溶含水系统溢流泉演化过程的数值模拟[J]. 中国岩溶, 2010, 29 (4): 378-384.
    [13]
    张莉丽,张辛,王云,等. 非常低延展性裂隙岩体REV存在性研究[J]. 水文地质工程地质,2011,38(5): 20-25.
    [14]
    王敬霞,地下水作用下灰岩裂隙溶解扩展过程实验研究[D]. 北京:中国地质大学(北京), 2019.
    [15]
    Gabrovsek F, Dreybrodt W. A Model of the Early Evolution of Karst Aquifers in Limestone in the Dimensions of Length and Depth [J] . Journal of Hydrology, 2001, 240 (3): 206-224 .
    [16]
    王云,于青春,薛亮. 溶蚀作用下古岩溶盆地系统中介质场演化模拟[J]. 现代地质,2010, 24(5): 1007-1015.
    [17]
    Long J C S, Gilmour P, Witherspoon P A. A Model for Steady Fluid Flow in Random Three Dimensional Networks of Disc-shaped Fracture [J]. Water Resources Research,1985, 21(8): 1105-1115.
    [18]
    Yu Qingchun, Shen Jifang, Wan Junwei. Some Investigation on Early Organization of Karst System [J]. Journal of China University of Geosciences, 1999, 10: 314-321.
    [19]
    Dreybrodt, W. Principle of Early Development of Karst Conduits Under Natural and Man-Made Conditions Revealed by Mathematical Analysis of Numerical Models [J]. Water Resources Research, 1996, 32(9): 2923-2935.
    [20]
    Tsang Y W & Tsang C F Channel Model of Flow Through Fracture Media [J]. Water Resources Research, 1987, 23(3): 467-479.
    [21]
    于青春,黄喜新. 非连续裂隙网络水流计算机模拟[J]. 水文地质工程地质, 1992, 1(3): 20-24.
    [22]
    速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报,1995,17(5):19-24.
    [23]
    Lomize G M. Flow in Fractured Rocks[M]. Moscow: Gesener-Goizdat, 1951.
    [24]
    Wolfgang Dreybrodt . Processes in Karst Systems [M] . Berlin: Springer-Verlag, 1988: 230-234 .
    [25]
    刘再华,何师意,曹建华. 方解石溶解、沉淀速率控制的物理、化学机制[J]. 中国岩溶, 2001,20(1): 75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1757) PDF downloads(804) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return