• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
CHEN Qiying, AN Yulun, ZHOU Xu, WU Xian, XI Shijun, HAO Xinchao. Extraction of land use information in various karst landscapes based on multiple scale-spectral differential subdivision of GF-1 images[J]. CARSOLOGICA SINICA, 2019, 38(5): 785-794. doi: 10.11932/karst20190515
Citation: CHEN Qiying, AN Yulun, ZHOU Xu, WU Xian, XI Shijun, HAO Xinchao. Extraction of land use information in various karst landscapes based on multiple scale-spectral differential subdivision of GF-1 images[J]. CARSOLOGICA SINICA, 2019, 38(5): 785-794. doi: 10.11932/karst20190515

Extraction of land use information in various karst landscapes based on multiple scale-spectral differential subdivision of GF-1 images

doi: 10.11932/karst20190515
  • Publish Date: 2019-10-25
  • Image segmentation is a necessary step in information extraction from high-resolution images. The accuracy of such division can directly influence the precision of remote sensing classification. This work uses multiple scale-spectral differential method to conduct the division in karst mountainous areas, thus enhances the accuracy of information extraction. Using the standard most-adjacent classification method, information of land use is extracted from divided images. The accuracy of land use information extraction is compared for only multiple-scale subdivision and multiple-scale spectral differential subdivision. Results demonstrate that (1) multiple scale-spectral difference subdivision can solve the problems of over-division and under-division. (2) Multiple scale-spectral difference subdivision is superior to only using multiple scale subdivision. (3) Multiple scale-spectral difference subdivision considers many features of images such as spectra, lamination, and shape, thus permits to enhance the accuracy of division and classification of images in karst mountainous areas.

     

  • loading
  • [1]
    Lv Zhiyong, Zhang Penglin, Jón Atli Benediktsson. Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification[J].Remote Sensing.2017,9(3):1-17.
    [2]
    吴文欢,于宏,赵英俊,等.基于面向对象的高分辨率遥感影像目标信息提取[J].世界核地质科学,2016,33(2):91-95.
    [3]
    刘小鹏,窦关新,赵宝军,等.面向对象的遥感影像信息提取研究[J].北京测绘,2016(2):106-109.
    [4]
    佃袁勇,方圣辉,姚崇怀.多尺度分割的高分辨率遥感影像变化检测[J].遥感学报,2016,20(1):129-137.
    [5]
    王文泉,陈永富,李肇晨,等.基于面向对象的热带林分类方法研究[J].南京林业大学学报(自然科学版),2017,41(3):117-123.
    [6]
    龚文峰,刘芳平,王笑峰,等.基于面向对象的太阳岛土地利用信息提取研究[J].黑龙江水利,2016,2(10):28-34.
    [7]
    任传帅,叶回春,崔贝,等.基于面向对象分类的芒果林遥感提取方法研究[J].资源科学,2017,39(8):1584-1591.
    [8]
    Sun Wenyi, Tian Yuansheng, Mu Xingmin, et al. Loess Landslide Inventory Map Based on GF-1 Satellite Imagery[J]. Remote Sensing 2017,9(4):314-330.
    [9]
    黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004(1):68-74.
    [10]
    周亦,张亚亚.利用eCognition进行高分一号卫星数据土地利用现状解译能力测试[J].测绘通报,2016(8):77-80+94.
    [11]
    Chen Jie, Deng Min, Xiao Pengfeng, et al. Optimal spatial scale choosing for high resolution imagery based on texture frequency analysis[J].Journal of Remote Sensing,2011,15(3):492-511.
    [12]
    费鲜芸,王婷,魏雪丽.基于多尺度分割的遥感影像滨海湿地分类[J].遥感技术与应用,2015,30(2):298-303.
    [13]
    苏伟,李京,陈云浩,等.基于多尺度影像分割的面向对象城市土地覆被分类研究:以马来西亚吉隆坡市城市中心区为例[J].遥感学报,2007(4):521-530.
    [14]
    林雨准,张保明,徐俊峰,等.多特征多尺度相结合的高分辨率遥感影像建筑物提取[J].测绘通报,2017(12):53-57.
    [15]
    李雪冬,张洪岩,杨广斌,等.辅以地貌类型的喀斯特地区土地利用信息提取[J].国土资源遥感,2016,28(3):138-145.
    [16]
    张正健,李爱农,雷光斌,等.基于多尺度分割和决策树算法的山区遥感影像变化检测方法:以四川攀西地区为例[J].生态学报,2014,34(24):7222-7232.
    [17]
    Feng Xia, Qiu Kun, Cui Wenhong,et al. Multiscale description and recognition of target shape in high-resolution remote sensing images[J].Journal of Remote Sensing,2014,18(1):90-104.
    [18]
    马燕妮,明冬萍,杨海平.面向对象影像多尺度分割最大异质性参数估计[J].遥感学报.2017,21(4):566-578.
    [19]
    田甜,范文义,卢伟,等.面向对象的优势树种类型信息提取技术[J].应用生态学报,2015,26(6):1665-1672.
    [20]
    刘佳雨.利用面向对象的信息提取技术进行城市用地分类[J].西部资源,2016(4):156-159+171.
    [21]
    李雪冬,杨广斌,李蔓,等.面向对象的喀斯特地区土地利用遥感分类信息提取:以贵州毕节地区为例[J].中国岩溶,2013,32(2):231-237.
    [22]
    刘家福,刘吉平,姜海玲.eCognition 数字图像处理方法[M].北京:科学出版社,2017:52-56.
    [23]
    安霞霞,杨广斌,许元红,等.喀斯特山区居民地多尺度遥感信息提取精度对比分析[J].中国岩溶,2017,36(4):501-511.
    [24]
    Zhai Yongguang, Qu Zhongyi, and Hao Lei. Land Cover Classification Using Integrated Spectral,Temporal,and Spatial Features Derived from Remotely Sensed Images[J].Remote Sensing,2018,10(3):383-408.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1790) PDF downloads(429) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return