Citation: | ZHANG Shuangshuang, JIN Zhenjiang, JIA Yuanhang, LI Qiang. Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use[J]. CARSOLOGICA SINICA, 2019, 38(2): 164-172. doi: 10.11932/karst20190203 |
[1] |
Daoxian Y. On the Karst Ecosystem[J]. Acta Geologica Sinica(English Edition), 2001, 75(3): 336-338.
|
[2] |
赵其国. 土壤圈在全球变化中的意义与研究内容[J]. 地学前缘, 1997, 4(Z1): 157-166.
|
[3] |
Yergeau E, Newsham K K, Pearce D A, et al. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats[J]. Environmental Microbiology, 2007, 9(11):2670-2682.
|
[4] |
曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003,18(1): 37-44.
|
[5] |
潘根兴, 曹建华, 何师意, 等. 岩溶土壤系统对空气CO2的吸收及其对陆地系统碳汇的意义:以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J]. 地学前缘, 2000,7(4): 580-587.
|
[6] |
潘根兴, 李恋卿, 郑聚锋, 等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报, 2008, 45(5):901-914.
|
[7] |
肖伟, 苏以荣, 梁士楚, 等. 广西典型喀斯特地区深层土壤有机碳矿化及其影响因素[J]. 生态学杂志, 2012, 31(4): 981-986.
|
[8] |
靳振江, 李强, 黄静云, 等. 典型岩溶生态系统土壤酶活性、微生物数量、有机碳含量及其相关性:以丫吉岩溶试验场为例[J]. 农业环境科学学报, 2013, 32(2): 307-313.
|
[9] |
方芳. 岩溶与非岩溶土壤微生物数量、酶活性与碳源代谢功能比较[D].桂林:桂林理工大学, 2015.
|
[10] |
高喜, 万珊, 曹建华, 等. 岩溶区与非岩溶区土壤微生物活性的对比研究[J]. 地球与环境, 2012, 40(4): 499-504.
|
[11] |
靳振江, 邰继承, 潘根兴, 等. 荆江地区湿地与稻田有机碳、微生物多样性及土壤酶活性的比较[J].中国农业科学, 2012, 45(18): 3773-3781.
|
[12] |
Chen H, Li D, Xiao K, et al. Soil microbial processes and resource limitation in karst and nonkarst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409.
|
[13] |
申宏岗, 曹建华, 潘根兴. 桂林毛村岩溶区与非岩溶区果园土壤养分性质比较研究[J]. 南京农业大学学报, 2008, 31(4): 82-85.
|
[14] |
方芳, 靳振江, 李强, 等. 岩溶区与非岩溶区土壤有机碳、养分及特征元素对比[J]. 桂林理工大学学报, 2016, 36(3): 550-556.
|
[15] |
鲁如坤. 土壤农业化学分析[M].北京:中国农业科学出版社, 1999:13-14,24-26,106-108,147-152.
|
[16] |
Quast C, Pruesse E, Yilmaz P, et al. The silva ribosomal rna gene database project: Improved data processing and web-based tools[J]. Nucleic acids research,2013, 41(1): 590-596.
|
[17] |
Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266-267.
|
[18] |
Barns S M, Cain E C, Sommerville L, et al. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Appl Environ Microbiol, 2007, 73(9): 3113-3116.
|
[19] |
陈家瑞, 曹建华,李涛,等.西南典型岩溶区土壤微生物数量研究[J]. 广西师范大学学报(自然科学版),2010,28(4):96-100.
|
[20] |
王伏伟, 王晓波, 李金才, 等. 施肥及秸秆还田对砂姜黑土细菌群落的影响[J]. 中国生态农业学报, 2015, 23(10): 1302-1311.
|
[21] |
梁沪莲, 郭小雅, 刘洋, 等. 基于高通量测序的 4 种硝化细菌富集培养物微生物群落结构分析[J]. 微生物学通报,2017,10.13344/j.microbiol.china.160961
|
[22] |
王林, 李冰, 余家辉, 等. 不同湿地模型中根系微生物的多样性[J]. 环境科学, 2017, 42(8): 1-12.
|
[23] |
雷旭, 李冰, 李晓, 等. 复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5): 1373-1381.
|
[24] |
Farag I F, Youssef N H, Elshahed M S. Global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" (WS3)[J]. Applied & Environmental Microbiology, 2017, 83(10). DOI: 10.1128/AEM.00521-17.
|
[25] |
Lin W, Pan Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria[J]. Environmental Microbiology Reports, 2015, 7(2): 237-242.
|
[26] |
张治伟, 朱章雄, 傅瓦利, 等. 岩溶山地土壤氧化铁形态及其与成土环境的关系[J]. 环境科学, 2012, 33(6): 2013-2020.
|
[27] |
贺晓凌, 宋超, 张蕾萍, 等. 垃圾渗滤液对土壤微生物多样性的影响[J]. 天津工业大学学报, 2017, 36(1): 36-40.
|
[28] |
王春香, 田宝玉, 吕睿瑞, 等. 西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析[J]. 微生物学通报, 2010, 37(1): 24-29.
|
[29] |
王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016,32(2): 14-20.
|
[30] |
张薇, 胡跃高, 黄国和, 等. 西北黄土高原柠条种植区土壤微生物多样性分析[J]. 微生物学报, 2007, 47(5): 751-756.
|
[31] |
艾超, 孙静文, 王秀斌, 等. 植物根际沉积与土壤微生物关系研究进展[J]. 植物营养与肥料学报, 2015, 21(5): 1343-1351.
|
[32] |
Naether A, Foesel B U, Naegele V, et al. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils[J]. Appl Environ Microbiol, 2012, 78(20): 7398-7406.
|
[33] |
Zhang Y, Cong J, Lu H, et al. Community structure and elevational diversity patterns of soil Acidobacteria[J]. Journal of Environmental Sciences, 2014, 26(8): 1717-1724.
|
[34] |
Ward N L, Challacombe J F, Janssen P H, et al. Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Appl Environ Microbiol, 2009, 75(7): 2046-2056.
|
[35] |
Gschwendtner S, Leberecht M, Engel M, et al. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions[J]. Microbial Ecology, 2015, 69(4): 867-878.
|
[36] |
Dunbar J, Gallegos-Graves L V, Steven B, et al. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3[J]. Soil Biology & Biochemistry, 2014, 76(1): 227-234.
|
[37] |
J D, Sa E, Lv G-G. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide[J]. Environmental Microbiology, 2012, 5(14): 1145-1158.
|
[38] |
陶于祥, 潘根兴, 刘德辉, 等. 岩溶系统土壤吸释CO2作用及其环境意义:以桂林丫吉村岩溶试验场为例[J]. 火山地质与矿产, 1998,19(3):236-241.
|