• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 38 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
ZHANG Shuangshuang, JIN Zhenjiang, JIA Yuanhang, LI Qiang. Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use[J]. CARSOLOGICA SINICA, 2019, 38(2): 164-172. doi: 10.11932/karst20190203
Citation: ZHANG Shuangshuang, JIN Zhenjiang, JIA Yuanhang, LI Qiang. Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use[J]. CARSOLOGICA SINICA, 2019, 38(2): 164-172. doi: 10.11932/karst20190203

Comparison of soil bacterial community structures from three soil land-use between karst and non-karst areas under three kinds of land use

doi: 10.11932/karst20190203
  • Publish Date: 2019-04-25
  • The purpose of this study is to reveal the effect of microbe on the cycle of soil organic carbon (SOC) in karst areas. Soil samples of paddy fields,maize fields and citrus orchards were collected from a karst area, mixed area and non-karst area at the Maocun karst experimental site in Guilin. The abundance, composition and diversity of microbe were compared based the results from high-throughput sequencing technology. The results show that there are 48,159 sequences with 2,602 OTUs. The dominant phylum of soil bacteria (relative abundance >10%) are Proteobacteria, Acidobacteria and Actinobacteria. The dominant classes (relative abundance >10%) are Acidobacteria and β-proteobateria. The OTUs abundances of both Proteobacteria and Latescibacteria subgroup 6 in the karst area are higher than those in the other two areas. The relative abundances of both subgroup1 and subgroup 2 in the karst area are lower than those in the other areas. Redundancy analysis indicates that SOC, pH and total nitrogen are the key factors to cause microbial changes.

     

  • loading
  • [1]
    Daoxian Y. On the Karst Ecosystem[J]. Acta Geologica Sinica(English Edition), 2001, 75(3): 336-338.
    [2]
    赵其国. 土壤圈在全球变化中的意义与研究内容[J]. 地学前缘, 1997, 4(Z1): 157-166.
    [3]
    Yergeau E, Newsham K K, Pearce D A, et al. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats[J]. Environmental Microbiology, 2007, 9(11):2670-2682.
    [4]
    曹建华, 袁道先, 潘根兴. 岩溶生态系统中的土壤[J]. 地球科学进展, 2003,18(1): 37-44.
    [5]
    潘根兴, 曹建华, 何师意, 等. 岩溶土壤系统对空气CO2的吸收及其对陆地系统碳汇的意义:以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J]. 地学前缘, 2000,7(4): 580-587.
    [6]
    潘根兴, 李恋卿, 郑聚锋, 等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报, 2008, 45(5):901-914.
    [7]
    肖伟, 苏以荣, 梁士楚, 等. 广西典型喀斯特地区深层土壤有机碳矿化及其影响因素[J]. 生态学杂志, 2012, 31(4): 981-986.
    [8]
    靳振江, 李强, 黄静云, 等. 典型岩溶生态系统土壤酶活性、微生物数量、有机碳含量及其相关性:以丫吉岩溶试验场为例[J]. 农业环境科学学报, 2013, 32(2): 307-313.
    [9]
    方芳. 岩溶与非岩溶土壤微生物数量、酶活性与碳源代谢功能比较[D].桂林:桂林理工大学, 2015.
    [10]
    高喜, 万珊, 曹建华, 等. 岩溶区与非岩溶区土壤微生物活性的对比研究[J]. 地球与环境, 2012, 40(4): 499-504.
    [11]
    靳振江, 邰继承, 潘根兴, 等. 荆江地区湿地与稻田有机碳、微生物多样性及土壤酶活性的比较[J].中国农业科学, 2012, 45(18): 3773-3781.
    [12]
    Chen H, Li D, Xiao K, et al. Soil microbial processes and resource limitation in karst and nonkarst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409.
    [13]
    申宏岗, 曹建华, 潘根兴. 桂林毛村岩溶区与非岩溶区果园土壤养分性质比较研究[J]. 南京农业大学学报, 2008, 31(4): 82-85.
    [14]
    方芳, 靳振江, 李强, 等. 岩溶区与非岩溶区土壤有机碳、养分及特征元素对比[J]. 桂林理工大学学报, 2016, 36(3): 550-556.
    [15]
    鲁如坤. 土壤农业化学分析[M].北京:中国农业科学出版社, 1999:13-14,24-26,106-108,147-152.
    [16]
    Quast C, Pruesse E, Yilmaz P, et al. The silva ribosomal rna gene database project: Improved data processing and web-based tools[J]. Nucleic acids research,2013, 41(1): 590-596.
    [17]
    Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266-267.
    [18]
    Barns S M, Cain E C, Sommerville L, et al. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Appl Environ Microbiol, 2007, 73(9): 3113-3116.
    [19]
    陈家瑞, 曹建华,李涛,等.西南典型岩溶区土壤微生物数量研究[J]. 广西师范大学学报(自然科学版),2010,28(4):96-100.
    [20]
    王伏伟, 王晓波, 李金才, 等. 施肥及秸秆还田对砂姜黑土细菌群落的影响[J]. 中国生态农业学报, 2015, 23(10): 1302-1311.
    [21]
    梁沪莲, 郭小雅, 刘洋, 等. 基于高通量测序的 4 种硝化细菌富集培养物微生物群落结构分析[J]. 微生物学通报,2017,10.13344/j.microbiol.china.160961
    [22]
    王林, 李冰, 余家辉, 等. 不同湿地模型中根系微生物的多样性[J]. 环境科学, 2017, 42(8): 1-12.
    [23]
    雷旭, 李冰, 李晓, 等. 复合垂直流人工湿地系统中不同植物根际微生物群落结构[J]. 生态学杂志, 2015, 34(5): 1373-1381.
    [24]
    Farag I F, Youssef N H, Elshahed M S. Global distribution patterns and pangenomic diversity of the candidate phylum "Latescibacteria" (WS3)[J]. Applied & Environmental Microbiology, 2017, 83(10). DOI: 10.1128/AEM.00521-17.
    [25]
    Lin W, Pan Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria[J]. Environmental Microbiology Reports, 2015, 7(2): 237-242.
    [26]
    张治伟, 朱章雄, 傅瓦利, 等. 岩溶山地土壤氧化铁形态及其与成土环境的关系[J]. 环境科学, 2012, 33(6): 2013-2020.
    [27]
    贺晓凌, 宋超, 张蕾萍, 等. 垃圾渗滤液对土壤微生物多样性的影响[J]. 天津工业大学学报, 2017, 36(1): 36-40.
    [28]
    王春香, 田宝玉, 吕睿瑞, 等. 西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析[J]. 微生物学通报, 2010, 37(1): 24-29.
    [29]
    王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016,32(2): 14-20.
    [30]
    张薇, 胡跃高, 黄国和, 等. 西北黄土高原柠条种植区土壤微生物多样性分析[J]. 微生物学报, 2007, 47(5): 751-756.
    [31]
    艾超, 孙静文, 王秀斌, 等. 植物根际沉积与土壤微生物关系研究进展[J]. 植物营养与肥料学报, 2015, 21(5): 1343-1351.
    [32]
    Naether A, Foesel B U, Naegele V, et al. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils[J]. Appl Environ Microbiol, 2012, 78(20): 7398-7406.
    [33]
    Zhang Y, Cong J, Lu H, et al. Community structure and elevational diversity patterns of soil Acidobacteria[J]. Journal of Environmental Sciences, 2014, 26(8): 1717-1724.
    [34]
    Ward N L, Challacombe J F, Janssen P H, et al. Three genomes from the phylum acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Appl Environ Microbiol, 2009, 75(7): 2046-2056.
    [35]
    Gschwendtner S, Leberecht M, Engel M, et al. Effects of Elevated Atmospheric CO2 on Microbial Community Structure at the Plant-Soil Interface of Young Beech Trees (Fagus sylvatica L.) Grown at Two Sites with Contrasting Climatic Conditions[J]. Microbial Ecology, 2015, 69(4): 867-878.
    [36]
    Dunbar J, Gallegos-Graves L V, Steven B, et al. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3[J]. Soil Biology & Biochemistry, 2014, 76(1): 227-234.
    [37]
    J D, Sa E, Lv G-G. Common bacterial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide[J]. Environmental Microbiology, 2012, 5(14): 1145-1158.
    [38]
    陶于祥, 潘根兴, 刘德辉, 等. 岩溶系统土壤吸释CO2作用及其环境意义:以桂林丫吉村岩溶试验场为例[J]. 火山地质与矿产, 1998,19(3):236-241.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2714) PDF downloads(600) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return