• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
LIU Zhenhua, FAN Hongyun, ZHU Yuze, LIU Shang. Prediction model for the scale of karst cave based on back propagation artificial neural network and its application[J]. CARSOLOGICA SINICA, 2018, 37(1): 139-145. doi: 10.11932/karst2018y03
Citation: LIU Zhenhua, FAN Hongyun, ZHU Yuze, LIU Shang. Prediction model for the scale of karst cave based on back propagation artificial neural network and its application[J]. CARSOLOGICA SINICA, 2018, 37(1): 139-145. doi: 10.11932/karst2018y03

Prediction model for the scale of karst cave based on back propagation artificial neural network and its application

doi: 10.11932/karst2018y03
  • Publish Date: 2018-02-25
  • In complex karst region, the size of karst cave is affected by many factors, such as geological structure, properties of soluble rock and groundwater hydrodynamic system and so on, which is characterized by high complexity and nonlinearity. Through the study of the occurrence and development of karst caves in karst area, the control factors affecting the scale of karst cave are determined and quantitatively analyzed, for which the data of proved caves are collected. In order to solve the problem with data fuzziness and descriptive formation of the karst caves, in this paper, the method of Back Propagation (BP) artificial neural network is employed to achieve the prediction of the scale of karst caves. As a BP neural network model is self-organization and self-adaptive, it is expected to handle the nonlinearity of sample data. The model is designed, tested, and applied, based on the MATLAB R2012a software. The results show that BP artificial neural network prediction model for the scale of karst cave is of high accuracy with its algorithm of good convergence.

     

  • loading
  • [1]
    陈凯, 黄蕾, 方强. 遗传神经网络在累积性环境风险评价中的应用[J]. 环境监控与预警, 2012,4(2):1-6.
    [2]
    袁永才,李术才,李利平,等. 岩溶隧道施工过程中大型溶洞的综合预报及治理方案研究[J]. 现代隧道技术, 2015, 52(2):192-197.
    [3]
    李奎, 高波. 岩溶区隧道岩溶发育规律与岩溶洞穴探测[J]. 西部探矿工程, 2005(10):107-110.
    [4]
    李术才, 刘斌, 孙怀凤,等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6):1090-1113.
    [5]
    何晓群. 多元统计分析[M]. 北京:中国人民大学出版社,2012:135.
    [6]
    韩力群. 人工神经网络教程[M]. 北京:北京邮电大学出版社,2006:58-75.
    [7]
    葛颜慧,李术才,张庆松,等. 基于风险评价的隧道综合超前地质预报技术研究[J]. 岩土工程学报, 2010,32(7):1124-1130.
    [8]
    陈小前, 罗世彬, 王振国,等. BP神经网络应用中的前后处理过程研究[J]. 系统工程理论与实践, 2004, 22(1):65-70.
    [9]
    王永刚, 李辉. 基于灰色神经网络的民航事故征候预测模型研究[J]. 中国安全科学学报, 2012, 22(3):10-15.
    [10]
    陈伟, 马如雄, 郝艳红. 基于MATLAB的BP人工神经网络设计[J]. 智能计算机与应用, 2005(2):30-31.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2020) PDF downloads(715) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return