• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
LI Jie, ZHU Lixin, KANG Zhiqiang. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China[J]. CARSOLOGICA SINICA, 2018, 37(1): 43-52. doi: 10.11932/karst2018y01
Citation: LI Jie, ZHU Lixin, KANG Zhiqiang. Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China[J]. CARSOLOGICA SINICA, 2018, 37(1): 43-52. doi: 10.11932/karst2018y01

Characteristics of transfer and their influencing factors of heavy metals in soil-crop system of peri-urban agricultural soils of Nanning, South China

doi: 10.11932/karst2018y01
  • Publish Date: 2018-02-25
  • A total of 150 pairs of concentrations of Hg、Cd、Cr、Cu、Ni、Pb and Zn in the soils、grains of rice、vegetable and corn were determined in peri-urban agricultural soils of Nanning.The results indicated the mean soil concentrations of Hg、Cd、Cr、Cu、Ni、Pb and Zn were 0.116、0.202、56.76、22.12、14.49、25.18、56.28 μg·g-1,respectively.The mean concetrations of six heavy metals in crops were 0.001 1、0.037、0.054、1.153、0.205、0.011 and 9.37 μg·g-1,respectively.Enrichment factor showed that Cd is mainly originated from human sorce;whereas Cr and Ni were controlled by natural sources.Transfer ability of Pb is lower than other metals while transfer ability of Zn is higher than other metals. Transfer ability of As、Cd、Cr、Cu、Ni、Pb、Zn in soil-rice system was stronger than those in soil-vegetable and corn systems. Soil pH 、CaO、total organic matter、Fe2O3、K2O and MgO were major factors influencing metal transfer from soil to crops, whereas soil K2O and MgO contents presented a negative effect on heavy metal mobility in leafed vegetable cultivation systems.

     

  • [1]
    张桃林. 科学认识和防治耕地土壤重金属污染[J]. 土壤,2015,47(3):435-439.
    [2]
    Chen H, Yuan X, Li T, et al. Characteristics of heavy metal transfer and their influencing factors in different soil–crop systems of the industrialization region, China[J]. Ecotoxicology and Environmental Safety, 2016,126:193-201.
    [3]
    Tóth G, Hermann T, Da Silva M R, et al. Heavy metals in agricultural soils of the European Union with implications for food safety[J]. Environment International, 2016,88:299-309.
    [4]
    Ding C, Ma Y, Li X, et al. Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables[J]. Journal of Hazardous Materials, 2016,303:21-27.
    [5]
    Al Mamun S, Chanson G, Muliadi, et al. Municipal composts reduce the transfer of Cd from soil to vegetables[J]. Environmental Pollution, 2016,213:8-15.
    [6]
    Guala S D, Vega F A, Covelo E F. The dynamics of heavy metals in plant-soil interactions[J]. Ecological Modelling, 2010,221(8):1148-1152.
    [7]
    Li W, Xu B, Song Q, et al. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China[J]. Science of The Total Environment, 2014,472:407-420.
    [8]
    Zhang X, Zhong T, Liu L, et al. Impact of Soil Heavy Metal Pollution on Food Safety in China[J]. PLOS ONE, 2015,10(8):e135182.
    [9]
    朱立新, 马生明, 王之峰, 等. 平原区多目标地球化学调查异常查证及生态效应评价方法[J]. 中国地质, 2004,31(4):431-435.
    [10]
    朱立新, 马生明, 王之峰, 等. 沿海冲积平原区土壤中元素含量特征及其影响因素研究[J]. 地质与勘探, 2003,39(1):45-49.
    [11]
    陈红燕, 袁旭音, 李天元, 等. 不同污染源对水稻土及水稻籽粒的重金属污染研究[J]. 农业环境科学学报,2016,35(4):684-690.
    [12]
    豆长明, 徐德聪, 周晓铁, 等. 铜陵矿区周边土壤蔬菜系统中重金属的转移特征[J]. 农业环境科学学报, 2014,33(5):920-927.
    [13]
    朱丹尼, 邹胜章, 周长松, 等. 岩溶区典型土壤对Cd2+的吸附特性[J]. 中国岩溶, 2015,34(4):402-409.
    [14]
    谌金吾, 孙一铭, 杨占南, 等. 三峡库区云阳消落带土壤重金属形态及其在植物中的富集和转移[J]. 中国岩溶, 2012,31(4):415-422.
    [15]
    黄碧燕, 韦宇宁. 广西南宁市郊区土壤及其农副产品重金属污染状况监测与评价[J]. 农业环境与发展, 2000,17(4):20-22.
    [16]
    秦波, 白厚义, 陈秀娟, 等. 南宁市郊菜园土壤重金属污染评价[J]. 农业环境科学学报, 2006,25(S1):45-47.
    [17]
    孔德工, 唐其展, 田忠孝, 等. 南宁市蔬菜基地土壤重金属含量及评价[J]. 土壤, 2004,36(1):21-24.
    [18]
    成杭新, 李括, 李敏, 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014,21(3):265-306.
    [19]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [20]
    Gu Y, Wang Z, Lu S, et al. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China[J]. Environmental Pollution, 2012,163(4):248-255.
    [21]
    Zhang L, Ye X, Feng H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China[J]. Marine Pollution Bulletin, 2007,54(7):974-982.
    [22]
    Gu Y, Gao Y, Lin Q. Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China's largest city, Guangzhou[J]. Applied Geochemistry, 2016,67:52-58.
    [23]
    张伯尧. 兰州市菜地土壤和蔬菜重金属含量及其健康风险评估[D]. 甘肃农业大学生态学, 2009.
    [24]
    陈志良, 黄玲, 周存宇, 等. 广州市蔬菜中重金属污染特征研究与评价[J]. 环境科学, 2017,38(1):389-398.
    [25]
    Welch R M, Norvell W A. Mechanisms of Cadmium Uptake, Translocation and Deposition in Plants[M]. Springer Netherlands, 1999.
    [26]
    Nan Z, Li J, Zhang J, et al. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions[J]. Science of the Total Environment, 2002,285(1):187-195.
    [27]
    Turan M, Esringü A. Phytoremediation Based on Canola (Brassica napus L.) and Indian Mustard (Brassica juncea L.) Planted on Spiked Soil by Aliquot Amount of Cd, Cu, Pb, and Zn[J]. Plant Soil & Environment, 2007,53(1):7-15.
    [28]
    Cui L, Feng X, Lin C J, et al. Accumulation and translocation of 198Hg in four crop species[J]. Environmental Toxicology & Chemistry, 2014,33(2):334-340.
    [29]
    Guan G, Song X U. The Regularity of distribution, change and migration of heavy metals in soil-rice plant system[J]. Ecology & Environment, 2006,15(2):315-318.
    [30]
    李玉会. 外源Cr(Ⅲ)在长期不同施肥摟土中的形态转化及作物吸收[D]. 杨凌:西北农林科技大学, 2014.
    [31]
    Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011,159(1):84-91.
    [32]
    Laing G D, Vos R D, Vandecasteele B, et al. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary[J]. Estuarine Coastal & Shelf Science, 2008,77(4):589-602.
    [33]
    Laing G D, Rinklebe J, Vandecasteele B, et al. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review[J]. Science of the Total Environment, 2009,407(13):3972-3985.
    [34]
    Du L G, Vanthuyne D R, Vandecasteele B, et al. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil[J]. Environmental Pollution, 2007,147(3):615-625.
    [35]
    Papafilippaki A, Gasparatos D, Haidouti C, et al. Total and bioavailable forms of Cu, Zn, Pb and Cr in agricultural soils: A study from the hydrological basin of Keritis, Chania, Greece[J]. Global Nest Journal, 2007,9(3):201-206.
  • Relative Articles

    [1]JIANG Feng, LI Qiang, GAO Feng, JIQIN kebuzi, LIU Hanwu, WANG Ruofan. Heavy metal pollution of soil and its ecological risk evaluation in the phosphate mining area in central Guizhou[J]. CARSOLOGICA SINICA, 2024, 43(3): 650-660. doi: 10.11932/karst2024y029
    [2]Huang Chunyang, Huang Juan, Zhong Xiaoyu, Li Jie, Li Mingyu. Study on ecological risk threshold of farmland soil in typical karst region of Guangxi: A case study of Cd[J]. CARSOLOGICA SINICA. doi: 10.11932/karst2024y032
    [3]YU Fei, LUO Kai, WANG Jiabin, LI Yu, ZHOU Jiao, WANG Rui, YU Yawei, ZHANG Yunyi. Characteristics and influencing factors of heavy metal accumulation in soil-crop system in the karst area with high geological background of Chongqing[J]. CARSOLOGICA SINICA, 2023, 42(1): 71-83. doi: 10.11932/karst20230106
    [4]WU Huaying, HUANG Chenhui, LI Tengfang, HUANG Qibo, LUO Fei. Characteristics of element migration and influencing factors of lime soil in Guilin, Guangxi:A case study of lime soil in Huixian peak-cluster valley[J]. CARSOLOGICA SINICA, 2021, 40(5): 835-848. doi: 10.11932/karst20210510
    [5]LIU Pinzhen, JIA Yaqi, CHENG Zhifei, YANG Zhen, DU Qilu, WU Di. Ecological risk assessment of heavy metals in farmland soils around karst coal mining areas: A comparison of various methods[J]. CARSOLOGICA SINICA, 2018, 37(3): 371-378. doi: 10.11932/karst20180307
    [6]DENG Qin, WU Di, QIN Fanxin, YANG Zhen, JIA Yaqi, CHENG Zhifei, LIU Pinzhen. Pollution characteristics of heavy metals in soil of lead-zinc mining in karst areas[J]. CARSOLOGICA SINICA, 2017, 36(2): 248-254. doi: 10.11932/karst20170213
    [7]SUN Xiao-tao, ZHOU Zhong-fa, HUANG Zhi-ling, CHEN Sheng-zi, ZHANG Shao-yun. An optimized fuzzy comprehensive evaluation model for assessment of soil heavy metal contamination in tea production parks of karst mountainous regions[J]. CARSOLOGICA SINICA, 2016, 35(3): 282-290. doi: 10.11932/karst20160306
    [8]LI Yuan, LIU Zi-qi, LV Xiao-xi. Review of research on element migration and environmental indicators in karst cave systems[J]. CARSOLOGICA SINICA, 2016, 35(3): 322-331. doi: 10.11932/karst20160311
    [9]REN Kun, CHEN Zhi-bing, PAN Xiao-dong, ZHANG Mei. Environmental geochemistry characteristics of heavy metals and ecological risk assessment of surface sediments from Nanshan Laolongdong subterranean river, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(2): 144-152. doi: 10.11932/karst20160203
    [10]HONG Tao, XIE Yun-qiu, ZHAO Yi, Yang Li-chao. Effects of different land use and soil type on the migration of heavy metals in a pyrite smelting area[J]. CARSOLOGICA SINICA, 2016, 35(4): 439-445. doi: 10.11932/karst20160412
    [11]FAN Lian-jie, PEI Jian-guo, DU Yu-chao, LU Li, LIN Yong-sheng. Characteristics of the content and distribution of heavy metals in groundwater in Mashan area, middle to lower Hongshui River, Guangxi, China[J]. CARSOLOGICA SINICA, 2015, 34(4): 410-414. doi: 10.11932/karst20150415
    [12]DU Yu-chao, PEI Jiang-guo, LU Li, LIN Yong-sheng, Fan Lian-jie. Characteristics of heavy metal element distribution in the groundwater system of typical karst regions: A case study in Poyue underground river, Guangxi, China[J]. CARSOLOGICA SINICA, 2015, 34(4): 348-353. doi: 10.11932/karst20150406
    [13]LI Rui, GAO Jie, ZHANG Li, LI Jin-jin, JI Hong-bing. Element geochemical characteristics of red weathering crust from dolomite, north Guizhou, China[J]. CARSOLOGICA SINICA, 2014, 33(4): 396-404. doi: 10.11932/karst20140402
    [14]QIN Chao-ke, YI Yao, LIU Jing-jing, HE Na. Investigation and evaluation on heavy metal pollution in the waste water collecting depression in a lead-zinc mine of karst area[J]. CARSOLOGICA SINICA, 2013, 32(3): 318-324. doi: 10.3969/j.issn.1001-4810.2013.03.011
    [15]CHEN Jin-wu, SUN Yi-ming, YANG Zhan-nan, ZHANG Xian-qiang, SUN Min. Soil heavy metal’s form and their enrichment and transfer in plants in the water level fluctuating zone at Yunyang in Three Gorge reservoir area[J]. CARSOLOGICA SINICA, 2012, 31(4): 415-422. doi: 10.3969/j.issn.1001-4810.2012.04.010
    [16]XIANG Xiao-jing, LI Ting-yong, WANG Jian-li, LI Jun-yun, CHEN Yun-xuan, ZHOU Fu-li, ZHANG Tian-wen, BAI Ying. Geochemical characteristics of the overlying bedrock and soil, and its impact on hydro-chemistry of the drip waters in the Furong Cave, Chongqing[J]. CARSOLOGICA SINICA, 2011, 30(2): 193-199. doi: 10.3969/j.issn.1001-4810.2011.02.012
    [17]XU Cheng-xiang, LI Dao-hong, MEI Jie. Heavy metal content in animal body and its relations with soil and water in the Zhengjia small cave, Guizhou Province[J]. CARSOLOGICA SINICA, 2010, 29(1): 48-53. doi: 10.3969/j.issn.1001-4810.2010.01.009
    [18]MO Yuan-fu, XI Xiao-shuang, CHEN Zhong-jiang. The migration of elements among rock, soil and vegetation in karst area—A case in karst hilly area in Bama, Guangxi[J]. CARSOLOGICA SINICA, 2010, 29(4): 440-444. doi: 10.3969/j.issn.1001-4810.2010.04.015
    [19]DENG Yan, JIANG Zhong-cheng, LUO Wei-qun, LU Rui-qun, ZENG Yu-he, HUANG Hong-hui. COMPARISON OF GEOCHEMICAL LEACHING CHARACTERISTICS OF ELEMENTS BETWEEN DIFFERENT KARST ECOSYSTEMS— A Case Study in Guangxi Nongla and Nonggang Natural Forest Reserve Areas[J]. CARSOLOGICA SINICA, 2006, 25(2): 168-171. doi: 10.3969/j.issn.1001-4810.2006.02.014
    [20]LI Wei, YU Long-jiang, HE Qiu-fang, WU Yun, YU AN Dao-xian, CAO Jian-hua. MICROBES AND ITS CARBONIC ANHYDRASE IMPACT ON THE LEACHING TO CALCIUM AND MAGNESIUM ELEMENTS IN CALCAREOUS SOIL SYSTEM[J]. CARSOLOGICA SINICA, 2004, 23(1): 1-6. doi: 10.3969/j.issn.1001-4810.2004.01.001
  • Cited by

    Periodical cited type(45)

    1. 贺芳,汤泉,郑刘根,刘桂建,王玲玲. 亳州市土壤-白芍典型重金属含量分布及风险评价. 环境化学. 2025(01): 187-198 .
    2. 蓝淯琛,丁浩男,潘荣庆,吕浩能,张强,班国富,何烨,凌华荣,黄智刚. 利用阻控技术的水稻镉、砷安全种植研究. 浙江农业科学. 2024(01): 41-46 .
    3. 蒋羽雄,文美兰,潘启明,蒋柏昌,王忠伟. 广西荔浦市土壤—农作物中重金属迁移转化及生态效应. 物探与化探. 2024(03): 858-867 .
    4. 胡旭刚,谭继勇,覃兴涛,马文富,覃相,罗欢,黄志伟,李志才. 广西天峨主要耕地区农作物中重金属元素富集特征与影响因素. 现代地质. 2024(03): 784-792 .
    5. 朱能刚,肖高强,高晓红,朱丽红,向龙洲. 云南盈江昔马红米种植区土壤质量及红米富硒特征. 云南地质. 2024(02): 185-189 .
    6. 张超,贺峰,王姊煜,袁梦瑶,赖潘民旺,郭军康. 秦岭典型钼矿区农田土壤和作物重金属污染特征、来源解析及健康风险评价. 环境科学. 2024(09): 5526-5537 .
    7. 李龙波,高云龙,王晓丹,蔡大为,丁恒. 独山锑矿区周边土壤及农作物重金属污染特征及健康风险评估. 贵州师范大学学报(自然科学版). 2024(05): 58-65 .
    8. 余飞,余京,王佳彬,徐姝姝,罗恺,李瑜,王宇,王锐,张云逸. 重庆南部碳酸盐岩地区耕地土壤镉含量特征与风险评价. 湖北农业科学. 2023(03): 40-46 .
    9. 尹艳,董淑江,岁源. 2020年句容市稻田土壤-水稻系统重金属含量水平及污染评价. 职业与健康. 2023(05): 630-633 .
    10. 兰建梅,梅金华,何卫平,龙馨洁. 典型锑矿区周边农作物中重金属污染特征及健康风险评价. 科学技术与工程. 2023(08): 3569-3575 .
    11. 余飞,罗恺,王佳彬,李瑜,周皎,王锐,余亚伟,张云逸. 重庆岩溶地质高背景区土壤-农作物系统重金属累积特征及影响因素. 中国岩溶. 2023(01): 71-83 . 本站查看
    12. 刘映君,徐争启,田建民,张苏恒,付婷婷. 四川马边磷矿区土壤—玉米重金属富集特征研究. 四川环境. 2023(04): 244-251 .
    13. 成晓梦,赵辰,吴超,孙彬彬,曾道明,贺灵. 典型硫铁矿区农田土壤-作物系统重金属生态风险及迁移富集特征. 环境科学. 2023(11): 6309-6318 .
    14. 高婉莹,王冬艳,王兴佳,金晓彤,卢佳希. 长春市黑土城乡交错区重金属地球化学特征及生态风险评价. 世界地质. 2023(04): 749-760 .
    15. 滕永波,边荣春. 土壤—玉米中硒元素迁移富集特征研究——以山东省济南市章丘区宁家埠镇为例. 山东国土资源. 2023(12): 66-74 .
    16. 姜冰,孙增兵,张海瑞,刘阳,张洪滨. 山东省青州市典型碳酸盐岩区山楂和柿子对硒的富集规律初步研究. 中国农学通报. 2022(03): 37-43 .
    17. 孙志佳,李保飞,陈玉海,赵明杰,闫兴国,袁庆政,臧现菲. 广东湛江湾红树林沉积物重金属分布特征及生态风险评价. 海洋环境科学. 2022(02): 215-221 .
    18. 张龙,宋波,黄凤艳,肖乃川,顿梦杰. 湖南锡矿山周边土壤-农作物系统锑迁移转换特征及污染评价. 环境科学. 2022(03): 1558-1566 .
    19. 余飞,张永文,严明书,王锐,张风雷,钟克强,朱海山,罗凯. 重庆汞矿区耕地土壤和农作物重金属污染状况及健康风险评价. 环境化学. 2022(02): 536-548 .
    20. 周文龙,杨志忠,张涛,忙是材,杨正坤. 黔南荔波县水稻—根系土系统中硒含量影响因素分析. 物探与化探. 2022(02): 502-510 .
    21. 姚成斌,周明忠,熊康宁,张迪,杨桦,张先荣,杨连升. 喀斯特高原石漠化治理示范区土壤和农作物重金属含量特征. 中国环境科学. 2021(01): 316-326 .
    22. 马宏宏,彭敏,郭飞,刘飞,唐世琪,杨峥,张富贵,周亚龙,杨柯,李括,刘秀金. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素. 环境科学. 2021(03): 1514-1522 .
    23. 陈洁,王娟,王怡雯,姚启星,苏德纯. 影响不同农作物镉富集系数的土壤因素. 环境科学. 2021(04): 2031-2039 .
    24. 姚成斌,周明忠,熊康宁,杨桦,张迪,杨连升,王贵云. 撒拉溪石漠化治理示范区土壤-作物系统中重金属含量特征. 农业环境科学学报. 2021(06): 1256-1267 .
    25. 姜冰,董红志,高宗军,刘阳,张海瑞,董美川. 土壤-玉米重金属富集迁移特征及秸秆还田. 科学技术与工程. 2021(18): 7797-7805 .
    26. 廖海燕,何争珍,谢玉成. 土壤中铬含量对农产品安全性影响评价. 食品安全质量检测学报. 2021(15): 5960-5966 .
    27. 陈定玉,祁超,郭炳跃,梁胜跃,金志鹏,王聪,周乾,宋垠先,文宇博. 江苏中部农业园小麦和土壤镉元素含量关系研究. 环境监控与预警. 2021(05): 109-115 .
    28. 朱超,文美兰,刘攀峰,陈斌艳,鲍厚银,赵银强,陈昊,杨奕波. 桂林灵川县典型有机水稻田重金属元素分布特征及污染评价. 现代地质. 2021(05): 1433-1440 .
    29. 强瑀,李英菊,罗谦,陈美凤,李海燕,黄先飞,秦樊鑫. 典型铅锌矿区耕地土壤团聚体重金属含量与农作物含量相关性及其风险评价. 环境科学. 2021(12): 5967-5976 .
    30. 王林江,刘廷吉,林则鑫,曹戈,赵迎新. 土壤-作物系统重金属迁移转化研究进展. 安徽农学通报. 2021(22): 147-154 .
    31. 袁余洋,刘属灵,刘永林,王瑛. 重庆江津区自产大米和玉米中重金属的健康风险评价. 湖南农业大学学报(自然科学版). 2021(06): 677-683 .
    32. 刘冬,贺灵,文雪琴,孙彬彬,曾道明,吴超,成晓梦. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究. 岩矿测试. 2021(06): 883-893 .
    33. 史明易,王祖伟,王嘉宝,王文昭. 基于富集系数对蔬菜地土壤重金属的安全阈值研究. 干旱区资源与环境. 2020(02): 130-134 .
    34. 陈同斌,庞瑞,王佛鹏,周浪,宋波. 桂西南土壤镉地质异常区水稻种植安全性评估. 环境科学. 2020(04): 1855-1863 .
    35. 李瑾,王平艳,李艳丽,徐永全. 火电厂周边土壤污染及农作物重金属的累积特征评价. 昆明理工大学学报(自然科学版). 2020(03): 87-92+127 .
    36. 李朋飞,谭娟,雷丁尔,陶春军,杜国强,刘超. 安徽沿淮粮产区小麦与根系土重金属含量特征及影响因素. 西南农业学报. 2020(07): 1580-1586 .
    37. 曹宁,孙彬彬,曾道明,文美兰,吴超,贺灵,成晓梦. 珠江三角洲西部典型乡镇稻米与根系土重金属元素含量关系研究. 岩矿测试. 2020(05): 739-752 .
    38. 于林松,刘洪波,万方,邵丽娟,康桂玲,胡尊方. 姜湖贡米产地土壤-作物系统重金属元素分布、累积特征. 物探化探计算技术. 2020(06): 794-804 .
    39. 吕占禄,张金良,张晗,邹天森,刘凯,王慢想. 生物质能电厂周边土壤中重金属元素污染特征及评价. 环境化学. 2020(12): 3480-3494 .
    40. 马宏宏,彭敏,刘飞,郭飞,唐世琪,刘秀金,周亚龙,杨柯,李括,杨峥,成杭新. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征. 环境科学. 2020(01): 449-459 .
    41. 张炜华,于瑞莲,杨玉杰,胡恭任,崔建勇,颜妍,黄华斌. 厦门某旱地土壤垂直剖面中重金属迁移规律及来源解析. 环境科学. 2019(08): 3764-3773 .
    42. 宋赛虎,孟繁华,郝艳,李鸣晓,姜玉,师荣光,李瑞. 东北及黄淮海平原农产品产地土壤污染风险及防控对策. 环境科学研究. 2018(10): 1662-1668 .
    43. 王丽,闵宁. 煤矿区重金属在土壤-小麦中的分布特征及土壤污染评价. 九江学院学报(自然科学版). 2018(04): 7-11 .
    44. 孙英,周金龙,曾妍妍,陈云飞,王松涛,杜江岩. 新疆于田县农田土壤重(类)金属污染及潜在生态风险评价. 新疆农业科学. 2018(12): 2271-2278 .
    45. 夏伟,吴冬妹,袁知洋. 土壤—农作物系统中重金属元素迁移转化规律研究——以湖北宣恩县为例. 资源环境与工程. 2018(04): 563-568 .

    Other cited types(14)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.1 %FULLTEXT: 30.1 %META: 66.8 %META: 66.8 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.5 %其他: 11.5 %China: 7.0 %China: 7.0 %上海: 14.8 %上海: 14.8 %保定: 0.0 %保定: 0.0 %兰州: 0.0 %兰州: 0.0 %北京: 0.2 %北京: 0.2 %南宁: 0.1 %南宁: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %崇左: 1.4 %崇左: 1.4 %杭州: 0.1 %杭州: 0.1 %武汉: 0.0 %武汉: 0.0 %河池: 0.0 %河池: 0.0 %济南: 0.1 %济南: 0.1 %淄博: 0.0 %淄博: 0.0 %温州: 0.0 %温州: 0.0 %湖州: 0.1 %湖州: 0.1 %珠海: 0.6 %珠海: 0.6 %纽约: 1.6 %纽约: 1.6 %绵阳: 0.0 %绵阳: 0.0 %芒廷维尤: 0.3 %芒廷维尤: 0.3 %萍乡: 0.0 %萍乡: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 3.1 %西宁: 3.1 %贵阳: 0.1 %贵阳: 0.1 %郑州: 0.0 %郑州: 0.0 %马德里: 0.0 %马德里: 0.0 %马赛: 0.0 %马赛: 0.0 %驻马店: 58.3 %驻马店: 58.3 %其他China上海保定兰州北京南宁哥伦布崇左杭州武汉河池济南淄博温州湖州珠海纽约绵阳芒廷维尤萍乡衢州西宁贵阳郑州马德里马赛驻马店

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2185) PDF downloads(743) Cited by(59)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return