• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
LUO Lichuan, LIANG Xing, LIANG Xing, ZHOU Hong, LUO Mingming. Identifying three-dimensional groundwater flow patterns[J]. CARSOLOGICA SINICA, 2018, 37(5): 680-689. doi: 10.11932/karst20180505
Citation: LUO Lichuan, LIANG Xing, LIANG Xing, ZHOU Hong, LUO Mingming. Identifying three-dimensional groundwater flow patterns[J]. CARSOLOGICA SINICA, 2018, 37(5): 680-689. doi: 10.11932/karst20180505

Identifying three-dimensional groundwater flow patterns

doi: 10.11932/karst20180505
  • Publish Date: 2018-10-25
  • The study area is located in the eastern part of the Gaolan river basin, Xingshan county in the west of Hubei Province,South China. Uplift and erosion have produced a steep terrane of medium to low mountains and deep ravines that are characterized by complex karst landforms and great topographic relief. The terrain is generally high in the north and east, low in the south and west, with an elevation ranging from 349 m to 1,780 m amsl. The Gaolan river and its deep tributaries, Baiji river, Liangsan river, Tanyu river and Xiayang river, are successively developed from north to south. To identify 3D groundwater flow patterns in the study area , based on the results of 1∶50,000 scale karst hydrogeological survey,GIS technology and runoff segmentation were used in this paper to quantify the elevations of top and bottom of the karst aquifer system, from which we obtained infiltration recharge coefficient, groundwater runoff and other simulation data. The groundwater flow system under different rainfall conditions in the study area was numerically simulated. The results show that the development of groundwater flow patterns mainly controlled by the larger-scale potential sources and sinks, the effect of small and medium scale relief on groundwater level is not obvious. Because of the presence of deep river cut valleys, the groundwater of the Liangsan and Tanyu river basins is more powerful, which is favorable to the development of local flow systems. With the increase of recharge elevation in the east, the groundwater process is gradually increasing, and the localised flow systems are more developed; and the intermediate water flow systems that discharged to the Gaolan river are developed near the ridge areas. The simulation result also shows that once the annual rainfall in the study area is reduced from medium 1,021.1 mm to the lowest 725.5 mm, the intermediate flow system discharged from the eastern recharge area to the Gaolan river increases; in this range of rainfall intensity, there is no intermediate or regional groundwater flow system developed across the inter-mountain blocks.

     

  • [1]
    梁杏,张人权,靳孟贵,等. 地下水流系统—理论应用调查[M]. 北京:地质出版社,2015.
    [2]
    Tóth J. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins [J].Journal of Geophysical Research,1963,67(11):4375-4387.
    [3]
    Tóth J. Gravitational System of Groundwater Flow:Theory,Evaluation, Utilization[M].NewYork: Cambridge University Press, 2009.
    [4]
    Jiang X W, Li W, Wang X S, et al. Effect of Exponential Decay in Hydraulic Conductivity with Depth on Regional Groundwater Flow[J]. Geophysical Research Letters,2009,36(24):88-113.
    [5]
    Liang X, Quan D, Jin M, et al. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Process, 2013, 27 (24):3475-3483.
    [6]
    Liang X, Liu Y, Jin M G. Direct observation of complex Tóthian groundwater flow systems in the laboratory[J]. Hydrological Process, 2010,24 (24): 3568-3573.
    [7]
    Jiang X W, Wang X S, Wan L, et al. An Analytical Study on Stagnation Points in Nested Flow Systems in Basins with Depth-Decaying Hydraulic Conductivity[J]. Water Resources Research, 2011,47(1):128-139.
    [8]
    Wang J Z, Jiang X W, Wan L,et al. An Analytical Study on Groundwater Flow in Drainage Basins with Horizontal Wells[J]. Hydrogeology Journal,2014, 22 (7):1625-1638.
    [9]
    Robinson N I, Love A J. Hidden channels of groundwater flow in Tóthian drainage basins[J]. Advances in Water Resources,2013,62(12):71-78.
    [10]
    Anderson M P, Munter J A. Seasonal Reversals of Groundwater Flow around Lakes and the Relevance to Stagnation Points and Lake Budgets[J]. Water Resources Research,1981,17(4):1139-1150.
    [11]
    Vissers M J M, Perk M V D. The Stability of Groundwater Flow Systems in Unconfined Sandy Aquifers in the Netherlands[J]. Journol of Hydrology,2008,348 (3-4):292-304.
    [12]
    Wang X S, Wan L, Jiang X W, et al. Identifying Three-dimensional Nested Groundwater Flow Systems in a Tóthian Basin[J]. Advances in Water Resources,2017,108(10):139-156.
    [13]
    Wang J Z, Wrman A, Bresciani E, et al. On the Use of Latetime Peaks of Residence Time Distributions for the Characterization of Hierarchically Nested Groundwater Flow Systems[J]. Journal of Hydrology, 2016,543(10):47-58.
    [14]
    王家乐. 济南岩溶水系统多级次循环模式分析及识别方法研究[D]. 武汉:中国地质大学,2016.
    [15]
    Luo M M,Chen Z H,Criss R E,et al. Dynamics and Anthropogenic Impacts of Multiple Karst Flow Systems in a Mountainous Area of South China[J]. Hydrogeology Journal,2016,24(8): 1993-2002.
    [16]
    郭清海,王焰新. 水文地球化学信息对岩溶地下水流动系统特征的指示意义:以山西神头泉域为例[J]. 地质科技情报,2006,25(3):85-88.
    [17]
    王文祥,安永会,李文鹏,等. 基于环境同位素技术的张掖盆地地下水流动系统分析[J].水文地质工程地质,2016,43(2):25-30.
    [18]
    罗明明,肖天昀,陈植华,等. 香溪河岩溶流域几种岩溶水系统的地质结构特征[J]. 水文地质工程地质,2014,41(6):13-19,25.
    [19]
    尹德超,罗明明,张亮,等. 基于流量衰减分析的次降水入渗补给系数计算方法[J]. 水文地质工程地质,2016,43(3):11-16.
    [20]
    郭琳,陈植华. 岩溶地区地下河系统水资源定量评价的问题与出路[J]. 中国岩溶,2006,25(1):1-5.
    [21]
    蒙海花,王腊春. 岩溶流域水文模型研究进展[J]. 地理科学进展,2010,29(11):1311-1318.
    [22]
    章程,蒋勇军,连炎清,等. 利用SWMM模型模拟岩溶峰丛洼地系统降雨径流过程:以桂林丫吉试验场为例[J]. 水文地质工程地质,2007,34(3):10-14.
    [23]
    尹德超. 高岚河岩溶流域地下水资源量评价方法研究[D].武汉:中国地质大学,2015.
    [24]
    Reilly T E. System and Boundary Conceptualization in Ground-water Flow Simulation( Report )[M].East Lansing:US Department of Interior,US Geological Survey,2001.
    [25]
    田杰,金鑫,贺缠生.基于MODFLOW的山区地下水径流数值模拟[J].兰州大学学报(自然科学版),2014,50(3):324-332,337.
    [26]
    龚星. 基于溶解潜力的岩溶发育数值模型及其应用研究[D].武汉:中国地质大学,2016.
    [27]
    梁杏,牛宏,张人权,等. 盆地地下水流模式及其转化与控制因素[J]. 地球科学-中国地质大学学报,2012, 37(2):269-275.
  • Relative Articles

    [1]DANG Zhiwen, SHAO Jingli, CUI Yali, LI Jun, GONG Zhiqiang, ZHAO Liangjie, LIANG Yongsheng. Numerical simulation of karst groundwater in Dajing basin of Guizhou Province based on MODFLOW-CFP[J]. CARSOLOGICA SINICA, 2023, 42(2): 266-276. doi: 10.11932/karst2023y002
    [2]TAN Jiahua. Several key issues in the application of MODFLOW-CFP software to the numerical simulation of karst water systems[J]. CARSOLOGICA SINICA, 2023, 42(4): 636-647. doi: 10.11932/karst20230402
    [3]LU Fang, LUO Xuan, HU Wenguang, YU Lei. Water abundance of karst fissure water and its electrical properties in north Taihang Mountains: A case study of mountainous area in the west of Baoding[J]. CARSOLOGICA SINICA, 2022, 41(6): 986-997. doi: 10.11932/karst20220610
    [4]LIANG Tengfei, CHENG Jianmei, ZHANG Naiyan, SHI Wen, KAISAERJIANG·Aihemaiti. Numerical study on surface water leakage replenishment of the Fenhe 2nd reservoir into the Jinci spring system[J]. CARSOLOGICA SINICA, 2020, 39(2): 147-153. doi: 10.11932/karst2020022
    [5]LIU Ruitong, WANG Jinguo, ZHOU Yun, HUANG Hua, CHEN Changsheng. Simulation of karst groundwater balance in the Westshan mountains, Heqing county, Yunnan Province[J]. CARSOLOGICA SINICA, 2019, 38(4): 532-538. doi: 10.11932/karst20190409
    [6]WU Yazun, CEN Lei, LIN Yun, QU Pengchong, WANG Zijie. Numerical simulation for the evolution of covered karst fissure system between rivers[J]. CARSOLOGICA SINICA, 2019, 38(6): 839-845. doi: 10.11932/karst2019y11
    [7]ZHANG Jiantong, CHEN Shunjun, LIU Sumei, LIN Lusheng, XU Lihua. Numerical simulation analysis of interaction of superstructure-foundation-pile foundation under hidden karst condition[J]. CARSOLOGICA SINICA, 2018, 37(5): 792-798. doi: 10.11932/karst20180518
    [8]WANG Yang, LI Juan, XI Beidou, JI Yonghong, TANG Jun, LIU Jiancong, CUI Yali. Research on the division technology of karst groundwater source protection areas based on numerical simulation[J]. CARSOLOGICA SINICA, 2018, 37(6): 799-809.
    [9]XU Zhongping, ZHOU Xun, CUI Xiangfei, TA Mingming, WANG Xinyun, ZHANG Ying. Research advances of numerical simulation of groundwater in karst areas[J]. CARSOLOGICA SINICA, 2018, 37(4): 475-483. doi: 10.11932/karst20180401
    [10]ZHAO Liangjie, XIA Riyuan, YANG Yang, SHAO Jingli, YI Lianxing, WANG Zhe. Discussion and application of simulation methods for karst conduit flow based on MODFLOW[J]. CARSOLOGICA SINICA, 2017, 36(3): 346-351. doi: 10.11932/karst20170308
    [11]LI Duo, WEI Aihua, JIA Lei, CHEN Kang. Prediction of water inflow in karst-fracture of Fushan copper mine,Shandong Province,China[J]. CARSOLOGICA SINICA, 2017, 36(3): 319-326. doi: 10.11932/karst20170305
    [12]JIAO Youjun, PAN Xiaodong, ZENG Jie, REN Kun. Numerical modeling of the influence of karst-conduit structure on variation of spring flow[J]. CARSOLOGICA SINICA, 2017, 36(5): 736-742. doi: 10.11932/karst2017y48
    [13]HUA Shuai. Numerical simulation research on the stability of transmission tower pile foundations in a karst area of Guangdong Province[J]. CARSOLOGICA SINICA, 2014, 33(1): 44-50. doi: 10.3969/j.issn.1001-4810.2014.01.007
    [14]JIA Long, MENG Yan, GUAN Zhen-de. Evolution and numerical simulation of a karst soil cave[J]. CARSOLOGICA SINICA, 2014, 33(3): 294-298.
    [15]LI Gui-ren, ZHAO Zhen, CHEN Zhi-hua. Numerical simulation for groundwater under draining condition in complex karst mining area: An example from the Makeng iron mine in Fujian province[J]. CARSOLOGICA SINICA, 2012, 31(4): 382-387. doi: 10.3969/j.issn.1001-4810.2012.04.005
    [16]WANG Yun, YU Qing-chun, YU Qing-chun, MA Hao. Numerical simulation for the evolution of the overflow spring in fracture-karst aquifer system[J]. CARSOLOGICA SINICA, 2010, 29(4): 378-384. doi: 10.3969/j.issn.1001-4810.2010.04.005
    [17]HAN Wei, LI Guo-min, LI Ming, LI Guang-he, LI Hong-ming, WU San-san, ZHANG Ying-hua. Numerical analysis to groundwater exploitation in Dawu karst well field[J]. CARSOLOGICA SINICA, 2008, 27(2): 182-188. doi: 10.3969/j.issn.1001-4810.2008.02.014
    [18]ZHOU Xun, CHEN Ming-you, FANG Bin, ZHANG Hua, SHEN Ye, YAO Jin-mei, YU Qing-chun, LIN Li. 3-D NUMERICAL MODELING TO GROUNDWATER WELLHEAD IN BURIED KARST AREA— A Case Study to the Ninghebei Karst Wellhead in Tianjin[J]. CARSOLOGICA SINICA, 2006, 25(1): 6-11. doi: 10.3969/j.issn.1001-4810.2006.01.002
    [19]BIAN Jin-yu, XUE Yu-qun, CHENG Cheng, ZHU Gui-e, HE Fang. THREE-DIMENSIONAL NUMERICAL SIMULATION OF GROUNDWATER IN PUXI DISTRICT,SHANGHAI[J]. CARSOLOGICA SINICA, 2002, 21(3): 182-187. doi: 10.3969/j.issn.1001-4810.2002.03.006
    [20]FU Yan-ling. NUMERICAL SIMULATION OF KARST GROUNDWATER SYSTEM IN SOUTH HANXING HYDROGEOLOGIC UNIT[J]. CARSOLOGICA SINICA, 2002, 21(4): 269-275. doi: 10.3969/j.issn.1001-4810.2002.04.007
  • Cited by

    Periodical cited type(10)

    1. 高菡,宋一心,刘博瀚,陈小雪. 山东省泰安市岩溶地下水系统划分及循环模式分析. 水利水电快报. 2024(02): 29-33+43 .
    2. 杜川,李厚恩,陈素云. 数值模拟技术在污染地下水抽出-处理运行中的应用. 环境工程. 2023(07): 102-108 .
    3. 彭红明,王占巍,罗银飞,袁有靖,王万平. 基于地下水数值模拟的布哈河流域地下水可开采资源量评价. 现代地质. 2023(04): 943-953 .
    4. 郭绪磊,周宏,罗明明,黄琨,况野,曾圆梦,陈一帆,张苏雅. 黄陵穹隆周缘岩溶水流系统特征及成因. 地质科技通报. 2022(01): 328-340 .
    5. 刘元晴,文冬光,吕琳,李伟,张福存,王新峰,孟顺祥. 沂蒙山区典型断陷盆地岩溶地下水系统特征:以莱芜盆地为例. 地质科技通报. 2022(01): 157-167 .
    6. 南天,曹文庚,王卓然,张娟娟,张栋. 利用趋势化随机参数场的地下水流数值模拟优化方法. 现代地质. 2022(02): 591-601 .
    7. 于斯遥,秦梓萱,杨艳娜,毛唯娜,郝朝,许模,刘洋. 明月峡背斜南部张关——排花洞岩溶水系统地下水径流模式解析. 中国岩溶. 2022(04): 599-609 . 本站查看
    8. 焦彤彤,戴安国,孙慧,王永强. 数值模拟在地下水领域的应用现状及展望. 环境保护与循环经济. 2021(12): 12-17 .
    9. 初道忠,赵忠琦. 基于GMS的大庄子矿区矿井最大涌水量预测研究. 山东理工大学学报(自然科学版). 2020(05): 42-46 .
    10. 刘芮彤,王锦国,周云,黄华,陈长生. 云南鹤庆西山岩溶地下水均衡模拟. 中国岩溶. 2019(04): 532-538 . 本站查看

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.9 %FULLTEXT: 31.9 %META: 65.2 %META: 65.2 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.9 %其他: 12.9 %其他: 0.1 %其他: 0.1 %China: 6.6 %China: 6.6 %[]: 0.1 %[]: 0.1 %上海: 13.8 %上海: 13.8 %北京: 0.4 %北京: 0.4 %南宁: 0.4 %南宁: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %宣城: 0.1 %宣城: 0.1 %崇左: 0.3 %崇左: 0.3 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %扬州: 0.1 %扬州: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 0.1 %杭州: 0.1 %桂林: 0.1 %桂林: 0.1 %武汉: 0.3 %武汉: 0.3 %济南: 0.1 %济南: 0.1 %淮安: 0.1 %淮安: 0.1 %温州: 0.1 %温州: 0.1 %珠海: 0.2 %珠海: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 1.4 %纽约: 1.4 %芒廷维尤: 0.7 %芒廷维尤: 0.7 %萍乡: 0.1 %萍乡: 0.1 %西宁: 1.4 %西宁: 1.4 %贵阳: 0.1 %贵阳: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %驻马店: 60.1 %驻马店: 60.1 %黄石: 0.1 %黄石: 0.1 %其他其他China[]上海北京南宁呼和浩特哥伦布宣城崇左巴黎常州扬州昆明杭州桂林武汉济南淮安温州珠海秦皇岛纽约芒廷维尤萍乡西宁贵阳遵义邯郸郑州重庆驻马店黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1906) PDF downloads(629) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return