• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
WANG Teng, JIN Zhenjiang, GUO Jiayi, ZHANG Shuangshuang, CHENG Yaping, ZHANG Qin, LI JinCheng. Comparison of abundance of CO2 fixing microbes in paddy soil from karst and non-karst area[J]. CARSOLOGICA SINICA, 2018, 37(1): 74-80. doi: 10.11932/karst2017y58
Citation: WANG Teng, JIN Zhenjiang, GUO Jiayi, ZHANG Shuangshuang, CHENG Yaping, ZHANG Qin, LI JinCheng. Comparison of abundance of CO2 fixing microbes in paddy soil from karst and non-karst area[J]. CARSOLOGICA SINICA, 2018, 37(1): 74-80. doi: 10.11932/karst2017y58

Comparison of abundance of CO2 fixing microbes in paddy soil from karst and non-karst area

doi: 10.11932/karst2017y58
  • Publish Date: 2018-02-25
  • oil samples were collected from paddy field in the Maocun karst experimental site to study the gene abundance of cbbLR1, cbbLG1 and cbbM, as the index of CO2 fixing bacteria in typical karst area, mixed area and nonkarst area with the utilization of realtime quantitative PCR technology. The results showed that the gene abundances of cbbLG1 in karst area were generally higher than that in non-karst area, and the maximum value was 1.42×109copies·g-1. The gene abundances of cbbLR1 and cbbM in mixed area were significantly higher than that in non-karst area, and the maximum values were 2.06×109 copies·g-1 and 3.35×107 copies·g-1. Correlation analysis showed that the abundance of cbbLG1 was significantly correlated with organic carbon mass fraction, total nitrogen mass fraction, and cation exchange capacity in the soil, which were significant factors that affect the gene abundance of cbbLG1. The abundance of the three cbbL genes had different sensitivity to pH, which was significantly positive correlated with the cbbLG1 gene and negatively correlated with the cbbM gene.

     

  • loading
  • [1]
    沈永平,王国亚.IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土,2013,35(4):1068-1076.
    [2]
    袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16(4):461-466.
    [3]
    李为,余龙江,周蓬蓬,等.西南岩溶区土壤微生物生态作用的初步研究:以桂林丫吉村岩溶试验场为例[J].水土保持学报,2004,18(3):112-115.
    [4]
    潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究,2000,20(4):325-334.
    [5]
    Nanba K, King G M , Dunfield K.Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase[J].Applied and Environmental Microbiology, 2004, 70(4):2245-2253.
    [6]
    Elsaied H, Naganuma T.Phylogenetic diversity of Ribulose-1, 5-Bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms[J].Applied and Environmental Microbiology, 2001, 67(4):1751-1765.
    [7]
    Miltner A, Richnow H H, Kopinke F D, et al.Assimilation of CO2 by soil microorganisms and transformation into soil organic matter[J].Organic Geochemistry, 2004, 35(9):1015-1024.
    [8]
    Tabita F R. Molecular and cellular regulation of autotrophic carbon dioxide fixation in micro organisms[J]. Microbiology and Molecular Biology Reviews, 1988, 52 (2) :155-189.
    [9]
    Watson G M, Tabita F R. Microbial ribulose-1,5-bisphosphate carboxylase /oxygenase: a molecule for phylogenetic and enzymological investigations[J].Fems Microbiology Letters, 1997, 146(1):13-22.
    [10]
    袁红朝,秦红灵,刘守龙,等.固碳微生物分子生态学研究[J].中国农业科学,2011,44(14):2951-2958.
    [11]
    Giri B J, Bano N, Hollibaugh J T.Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California[J]. Applied and environmental microbiology, 2004, 70(6): 34433448.
    [12]
    Alfreider A, Vogt C, Geiger-Kaiser M, et al. Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of RubisCO genotypes[J].Systematic and applied microbiology, 2009, 32(2):140-150.
    [13]
    刘艳.深海热液区微生物的筛选鉴定及对深海环境的响应机制[D].济南:山东师范大学, 2009.
    [14]
    Li Qiang, Wang Hua, Jin Zhenjiang, et al.The carbon isotope fractionation in the atmosphere–soil–spring system associated with CO2 fixation bacteria at Yaji karst experimental site in Guilin, SW China[J].Environmental Earth Sciences, 2015, 74(6):5393- 5401.
    [15]
    曲浩丽,肖永良,李立峰,等. 南京市大气降尘固碳微生物群落多样性研究[J].环境科技, 2016,29 (3):1-5.
    [16]
    翟心心.岩溶区土壤CO2浓度和土壤酶活性的变化规律及其关系:以重庆青木关岩溶槽谷为例[D].重庆:西南大学,2011.
    [17]
    鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999.
    [18]
    闫颖,何红波,解宏图,等.总有机碳分析仪测定土壤中微生物量方法的改进[J].理化检验化学分册,2008,44(3):279-280.
    [19]
    王伏伟,王晓波,李金才,等.秸秆还田配施化肥对砂姜黑土固碳细菌的影响[J].安徽农业大学学报,2015,42(5):818-824.
    [20]
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [21]
    曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44.
    [22]
    Ahmed A R,Pichler V,Homolak M,et al.High organic carbon stock in a karstic soil of the Middle-European Forest Province persists after centuries-long agroforestry management[J].European Journal of Forest Research,2012,131(6):1669-1680.
    [23]
    张春来,黄芬,杨慧,等.岩溶生态系统中的碳循环特征与碳汇效应[J].地球与环境,2013,41(4):378-388.
    [24]
    靳振江,曾鸿鹄,李强,等.起源喀斯特溶洞湿地稻田与旱地土壤的微生物数量、生物量及酶活性比较[J].环境科学,2016,37(1):335-341.
    [25]
    靳振江,李强,黄静云,等.典型岩溶生态系统土壤酶活性、微生物数量、有机碳含量及其性关性:以丫吉岩溶实验场为例[J].农业环境科学学报,2013,32(2):307-313.
    [26]
    李强,靳振江,李忠义,等.岩溶地貌部位对土壤微生物丰度与酶活性的影响[J].水土保持通报,2014,34(3):1-5.
    [27]
    Xiao K Q, Nie S A, Bao P, et al. Rhizosphere effect has no effect on marker genes related to autotrophic CO2 fixation in paddy soils?[J].Journal Soils and Sediments, 2014, 14(6):1082-1087.
    [28]
    Kellermann C, Selesi D, Lee N, et al.Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer[J].Fems Microbiology Ecology, 2012, 81(1):172-187.
    [29]
    Luo Y Q, Currie W S, Dukes J S, et al.Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide[J].Bioscience, 2004, 54(8):731-739.
    [30]
    赵仕花,章程,夏青,等.桂林毛村岩溶区和非岩溶区土壤有机质与氮分析研究[J].广西科学院学报,2007,23(1):36-38.
    [31]
    Stockdale E A, Shepherd M A, Fortune S, et al.Soil fertility in organic farming systems fundamentally different?[J].Soil Use and Management, 2002, 18(S1):301-308.
    [32]
    Zhang L M, Hu H W, Shen J P, et al.Ammoniaoxidizing archaea have more important role than ammoniaoxidizing bacteria in ammonia oxi dation of strongly acidic soils[J].International Society for Microbial Ecology, 2012, 6(5):1032-1045.
    [33]
    沈德福,李世杰,蔡德所,等.桂林岩溶湿地沉积物地球化学元素变化的环境影响因子分析[J].高校地质学报,2010,16(4):517-526.
    [34]
    靳振江,潘根兴,刘晓雨,等.太湖地区长期不同施肥水稻土N2和CO2固定细菌群落结构的特征和差异[J].植物营养与肥料学报,2013,19(1):82-92.
    [35]
    Selesi D, Schmid M, Hartmann A.Diversity of green-like and red-like ribulose 1,5-bisphosphate carboxylase/ oxygenase large-subunit genes (cbb L) in differently managed agricultural soils [J]. Applied and Environmental Micro-biology, 2005, 171(1):175-184.
    [36]
    Yuan H Z,Ge T D,Chen C Y,et al.Significant role formicrobial autotrophy in the sequestration of soil carbon [J].Applied and Environmental Microbiology,2012, 78 (7):2328-2336.
    [37]
    袁红朝,秦红灵,刘守龙,等.长期施肥对稻田土壤固碳功能菌群落结构和数量的影响[J].生态学报,2012,32(1):0183-0189.
    [38]
    Long X E, Yao H, Wang J, et al.Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils[J].Environmental Science & Technology, 2015, 49(12):7152-60.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2049) PDF downloads(607) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return