• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 37 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
LIU Wei, GAN Fuping, ZHOU Qiyou, ZHANG Wei. Research on forward simulation of multi-electrode spacing combined profile curves of typical karst water-rich structures[J]. CARSOLOGICA SINICA, 2018, 37(4): 602-607. doi: 10.11932/karst2017y39
Citation: LIU Wei, GAN Fuping, ZHOU Qiyou, ZHANG Wei. Research on forward simulation of multi-electrode spacing combined profile curves of typical karst water-rich structures[J]. CARSOLOGICA SINICA, 2018, 37(4): 602-607. doi: 10.11932/karst2017y39

Research on forward simulation of multi-electrode spacing combined profile curves of typical karst water-rich structures

doi: 10.11932/karst2017y39
  • Publish Date: 2018-08-25
  • Based on differential equation of a point source and the boundary conditions of electric field, and combined the popular high density electrode layout for exploring groundwater at present, we conduct 2D forward simulation of multi-electrode spacing combined profile curve for two common and water-rich structures with low resistance in karst area such as buried fault zone and karst cave. The simulation results show that the combined profile curves are sensitive to underground hidden low resistivity structrues , and the curves are well differentiated.For the water-rich cave, the orthogonal point is the most prominent when the depth of water-rich cave is about 1/2-2/3 times the electrode space; as the distance of the electrode continues to increase, the synchronous low trend gradually appears.The larger the space range of the underground low-resistance cave is, the better the curve differentiation of the combined profile is, and the more obvious abnormal of the orthogonal point presents. For the water-rich fault zone, when the electrode space increases, the orthogonal point slightly moves to the dip direction of the fault, but is not obvious. The position of the orthogonal point is mainly affected by the low resistivity in the shallow part. With the increase of the electrode space, the downward low resistivity zone play a considerable role, for which more and more measuring points present as low synchronization in the dip direction on the left side of the orthogonal point with smaller slope curve while larger slope curve from the right side of the orthogonal point, the apparent resistivity reaches the minimum value at the top of the fault. The apparent resistivity decreases gradually with the increase of the electrode space when the orthogonal points of combined profile curve are obvious, whereas the apparent resistivity tends to be stable with the increase of the electrode space when the abnormal shape of combined profile curve shows as low synchronization. Branches of combined profile curve on both sides are symmetrical to the horizontal symmetry model while asymmetric to the tilt model, and the inclination of low resistance body is consistent with the inclination of the steep side of the orthogonal point nearby. The simulation results can be applied to the interpretation of multi-electrode spacing combined profile curve in karst area.

     

  • loading
  • [1]
    刘福臣, 程兴奇, 王启田. 联合剖面法探测鲁东中生界地层地下水[J]. 节水灌溉, 2008(5):57-58+61.
    [2]
    董健, 胡雪平, 李肖鹏,等. 联合剖面法寻找基岩裂隙水[J]. 科学技术与工程, 2012, 12(14):3520-3522,3527.
    [3]
    徐振宇. 利用联合剖面法寻找岩溶裂隙水[J]. 地下水, 1994(3):133-135.
    [4]
    王爱国. 高密度电阻率成像与联合剖面法的联合测试技术[J]. 工程勘察, 2006(2):68-71.
    [5]
    卞兆津, 叶明金, 刘斌辉. 红层地区综合应用联合剖面法和激发极化法找水一例[J]. 物探与化探, 2008, 32(3):306-307,315.
    [6]
    甘伏平, 喻立平, 卢呈杰,等. 不同岩溶储水结构分析与地球物理勘察[J]. 地质与勘探, 2011, 47(4):663-672.
    [7]
    Chalikakis K, Plagnes V, Guerin R, et al. Contribution of geophysical methods to karst-system exploration: an overview[J]. Hydrogeology Journal, 2011, 19(6):1169-1180.
    [8]
    任杰. 联合剖面法探测地质体深度的试验研究[J]. 河北煤炭, 2007(3):1718.
    [9]
    郑智杰, 曾洁, 甘伏平. 装置和电极距对岩溶管道高密度电法响应特征的影响研究[J]. 水文地质工程地质, 2016, 43(5):161-165,172.
    [10]
    曹崇本. 高阻溶洞上高密度电法与高密度联合剖面法异常响应特征研究[J]. 贵州地质, 2012, 29(2):112-118.
    [11]
    熊彬, 阮百尧, 黄俊革. 直流电阻率测深中二维反演程序对三维数据的近似解释[J]. 地球科学中国地质大学学报, 2003, 28(1):102-106.
    [12]
    向阳,李玉冰,易利,等.排列方式及电极距对高密度电法异常响应的影响分析[J]. 工程地球物理学报,2011,8(4):426-432.
    [13]
    欧阳永永, 熊章强, 张大洲. 基于不同装置的二维高密度电法勘探效果比较与分析[J]. 世界地质, 2011, 30(3):451-458.
    [14]
    郭清石. 高密度电法对溶洞勘探的数值模拟研究[D].成都:西南交通大学, 2013.
    [15]
    徐世浙. 地球物理中的有限单元法[M].北京:科学出版社, 1994.
    [16]
    Karaoulis M, Revil A, Tsourlos P, et al. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography[J]. Computers & Geosciences, 2013, 54(4):164-170.
    [17]
    郑智杰, 陈贻祥, 甘伏平. 岩溶区岩土层地球物理性质浅析:以吉利岩溶塌陷区为例[J]. 地球物理学进展, 2016, 31(2):920-927.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1913) PDF downloads(599) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return