Citation: | ZHANG Kaiyan, LI Tongjian, ZHANG Xianqiang, SUN Min. Corrosion driving effects of three epilithic mosses in the Pudding karst area, Guizhou Province[J]. CARSOLOGICA SINICA, 2017, 36(4): 441-446. doi: 10.11932/karst20170403 |
[1] |
?王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,29(5):441-449.
|
[2] |
徐胜友,蒋忠诚.我国岩溶作用与犬气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-959.
|
[3] |
聂磊,萧洪东,侯雨佳,等.不同光照条件下石灰岩表面蓝藻生物岩溶侵蚀能力与生理活性研究[J].地学前缘,2012, 9(6):254-259.
|
[4] |
袁道先,蒋忠诚.IGCP379“岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质, 2000, (1):49-51.
|
[5] |
Crowther J. A comparision of the rock table and water hardness methods for determining chemical erosion rates on karst surface[J].Annual Geomorphology,1983,27(1):55-64.
|
[6] |
袁道先.现代岩溶学和全球变化[J].地学前缘,1997,4(1):17-25.
|
[7] |
Li W, Yu L J, Wu Y, et al. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007,98: 950-953.
|
[8] |
李为,余龙江,贺秋芳,等.微生物及其碳酸酐酶对岩溶土壤系统钙镁元素淋失的影响[J].中国岩溶,2004, 23(1):3-7.
|
[9] |
Lian B, Yuan D X, Liu Z H. Effect of microbes on karstification in karst ecosystems[J]. Chinese Science Bulletin, 2011, 56(35):3743-3747.
|
[10] |
Brownell P F, Bielig LM, Grof C P L. Increased carbonic anhydrase activity in leaves of sodium deficient C4 plants[J]. Australian Journal of Plant Physiology, 1991, 18: 589-592.
|
[11] |
刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义[J].地球学报, 2001, 22(5): 477-480.
|
[12] |
Xiao L, Hao J, Wang W, et al. The up regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014,31(7):632-641.
|
[13] |
李为,贾丽萍,余龙江,等.小同种类微生物及其碳酸酐酶对土壤-灰岩系统钙镁锌元素迁移作用的土柱模拟实验研究[J].土壤, 2007,39(3):453-459.
|
[14] |
Li W, Zhou P P, Jia I P, et al. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009,167:37-46.
|
[15] |
李西腾,吴沿友,郝建朝.喀斯特地区碳酸酐酶与环境的关系及意义[J].矿物岩石地球化学通报,2005,24(3):75-79.
|
[16] |
王福星,曹建华,黄俊发,等.生物岩溶[M].北京:地质出版社,1993. 61-62.
|
[17] |
李军峰,王智慧,张朝晖.喀斯特石漠化山区苔藓多样性及水土保持研究[J].环境科学研究, 2013,26(7):677-696.
|
[18] |
付兰, 张朝晖. 贵阳市苔藓植物的生物岩溶溶蚀初探[J]. 贵州师范大学学报:自然科学版, 2010, 28(4):140-143.
|
[19] |
张朝晖,祝安,王智慧.黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J].中国岩溶, 1996, 15(3): 224-232.
|
[20] |
曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学,1999,28(3):156-201.
|
[21] |
熊红福,王世杰,容丽,等.极端干旱对贵州省喀斯特地区植物的影响[J].应用生态学报,2011,22(5):1127-1134.
|
[22] |
曾成,赵敏,杨睿,等.岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较:以陈旗岩溶泉域为例[J].水文地质工程地质, 2014, 41(1):106-111.
|
[23] |
鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:115-151.
|
[24] |
Viles H A. Biokarst: review and prospect[J]. Progress in Physical Geography, 1984, 8: 523-542.
|
[25] |
Viles H A. Organisms and karst geomorphology. In: Viles H A. Ed. Biogeomorphology[M]. Oxford: Basil Blackwell, 1988. 319-350.
|
[26] |
吴沿友,李西腾,郝建朝,等.不同植物的碳酸酐酶活力差异研究[J].广西植物,2006, 26(4):366-369.
|
[27] |
Zaihua Liu. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 sink [J]. Acta Geologica Sinica,2001,75(3):275-278.
|
[28] |
章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011(26):21742180.
|
[29] |
曹建华.岩溶土壤系统中生物作用与有机碳转移对CaCO3-CO2-H2O体系的调节与控制[D].南京农业大学,2001
|