Citation: | LIU Lu, LI Fuchun, LI Lei, ZHANG Chonghong, LU Jiejie. Carbonic anhydrase excreted by bacteria induces the formation of carbonate minerals[J]. CARSOLOGICA SINICA, 2017, 36(4): 433-440. doi: 10.11932/karst20170402 |
[1] |
?Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304 (5677): 1623-1626.
|
[2] |
Aquilano D, Otálora F, Pastero L, et al. Three study cases of growth morphology in minerals: Halite, calcite and gypsum [J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62 (2): 227-251.
|
[3] |
Hirmas D R, Amrhein C, Graham R C, et al. Spatial and processbased modeling of soil inorganic carbon storage in an arid piedmont [J]. Geoderma, 2010, 154 (3-4): 486-494.
|
[4] |
Lian B, Hu Q, Chen J, et al. Carbonate biomineralization induced by soil bacterium Bacillus megaterium [J]. Geochimicaet CosmochimicaActa, 2006, 70 (22): 5522-5535.
|
[5] |
Meldrum N U, Roughton F J W. Carbonic anhydrase. Its preparation and properties [J]. Journal of Physiology, 1933, 80 (80): 113-142.
|
[6] |
Lindskog S. Structure and mechanism of carbonic anhydrase [J]. Pharmacology and Therapeutics, 1997, 74 (1): 1-20.
|
[7] |
Liu Z, Bartlow P, Dilmore R M, et al. Production, purification, and characterization of a fusion protein of carbonic anhydrase from Neisseria gonorrhoeae and cellulose binding domain from Clostridium thermocellum [J]. Biotechnology Progress, 2009, 25 (1): 68-74.
|
[8] |
Kim I G, Jo B H, Kang D G, et al. Biomineralizationbased conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase [J]. Chemosphere, 2012, 87 (10): 1091-1096.
|
[9] |
Kanth B K, Min K, Kumari S, et al. Expression and characterization of codonoptimized carbonic anhydrase from Dunaliella species for CO2 sequestration application [J]. Applied biochemistry and biotechnology, 2012, 167 (8): 2341-2356.
|
[10] |
Achal V, Pan X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation [J]. Current microbiology, 2011, 62 (3): 894-902.
|
[11] |
Dhami N K, Reddy M S, Mukherjee A. Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization [J]. Applied biochemistry and biotechnology, 2014, 172 (5): 2552-2561.
|
[12] |
李为, 曹龙, 周蓬蓬, 等. 温度对细菌碳酸酐酶催化碳酸钙沉积的影响[J]. 2013, 41(4): 371-377.
|
[13] |
崔建东, 李莹, 姬晓元, 等. 静电纺丝制备中空纤维原位固定化碳酸酐酶用于二氧化碳的吸收[J]. 高等学校化学学报, 2014, 35(9): 1999-2006.
|
[14] |
Xu Q L, Zhang C H, Li F C, et al. Arthrobacter sp. strain MF-2 induces high-mg calcite formation: Mechanism and implications for carbon fixation [J]. Geomicrobiology Journal, 2017, 34 (2): 157-165.
|
[15] |
Li W, Chen W S, Zhou P P, et al. Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase [J]. Colloids and Surfaces B: Biointerfaces, 2013, 102 (1):281-287.
|
[16] |
鲍士旦. 土壤农化分析 (第2版)[M]. 农业出版社, 1981: 130-132.
|
[17] |
Reinke L A, Moyer M J. p-Nitrophenol hydroxylation. A microsomal oxidation which is highly inducible by ethanol [J]. Drug Metabolism and Disposition, 1985, 13 (5): 548-552.
|
[18] |
张道勇, 潘响亮, 张京梅. 环境因子对Synechocystis sp.钙化动力学的影响[J]. 矿物岩石地球化学通报, 2008, 27 (2): 105-111.
|
[19] |
Kontoyannis C G, Vagenas N V. Calcium carbonate phase analysis using XRD and FTRaman spectroscopy[J]. The Analyst. 2000,125(2):251-255.
|
[20] |
Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the Earth system [J]. Earth and Planetary Science Letters, 2005, 234 (3-4): 299-315.
|
[21] |
Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats [J]. Earth-Science Reviews, 2009, 96 (3): 141-162.
|
[22] |
Arp G, Reimer A, Reitner J. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans [J]. Science, 2001, 292 (5522): 1701-1704.
|
[23] |
Faridi S, Satyanarayana T. Characteristics of recombinant alpha-carbonic anhydrase of polyextremophilic bacterium Bacillus halodurans TSLV1 [J]. International journal of biological macromolecules, 2016, 89: 659-668.
|
[24] |
Elder I, Han S, Tu C K, et al. Activation of carbonic anhydrase II by active-site incorporation of histidine analogs [J]. Archives of Biochemistry and Biophysics. 2004, 421 (2): 283-289.
|
[25] |
Power I M, Harrison A L, Dipple G M, et al. Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation [J]. International Journal of Greenhouse Gas Control, 2013, 16: 145-155.
|
[26] |
雷云. 球霰石型碳酸钙的研究进展 [J]. 长江大学学报, 2014 (34): 35-39.
|
[27] |
李福春, 郭文文. 三种好氧细菌诱导碳酸钙矿物的形成 [J]. 南京大学学报(自然科学), 2013, 49 (6): 665-672.
|
[28] |
马芳. 赖氨酸芽孢杆菌和节杆菌作用下碳酸盐矿物的形成 [D]. 南京: 南京农业大学, 2014.
|