• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 36 Issue 4
Aug.  2017
Turn off MathJax
Article Contents
LAN Funing, WANG Wenjuan, WU Huaying, JIANG Zhongcheng, QIN Xiaoqun, AN Shuqing. Temporal and spatial distributions of CO2 in soil and their influencing factors under different LUCC: A case study of the Dalongdong underground river drainage area[J]. CARSOLOGICA SINICA, 2017, 36(4): 427-432. doi: 10.11932/karst20170401
Citation: LAN Funing, WANG Wenjuan, WU Huaying, JIANG Zhongcheng, QIN Xiaoqun, AN Shuqing. Temporal and spatial distributions of CO2 in soil and their influencing factors under different LUCC: A case study of the Dalongdong underground river drainage area[J]. CARSOLOGICA SINICA, 2017, 36(4): 427-432. doi: 10.11932/karst20170401

Temporal and spatial distributions of CO2 in soil and their influencing factors under different LUCC: A case study of the Dalongdong underground river drainage area

doi: 10.11932/karst20170401
  • Publish Date: 2017-08-25
  • The objective of this work is to further understanding the temporal and spatial distribution characteristics of CO2 in soil and its influencing factors under different land use and cover change (LUCC). We choose four types of land usage including forest land, grassland, maize land and tobacco leaf land in the Dalongdong underground river drainage area of western Hunan as examples to observe CO2 concentration of soil under these land usage conditions for one year. The results show that the soil CO2 concentrations are of the following sequence: grassland (7,527 mg·m-3)> forest land (7,197 mg·m-3)> tobacco leaf land (4,562 mg·m-3)> maize land(4,414 mg·m-3). With increasing depth of profiles, the soil CO2 in grassland and maize land usage rises first (at 10-30 cm depth) and then is stabilized (at 30-50 cm depth), and the forest land and tobacco leaf land show a trend of increasing first (at 10-30 cm depth) and then decreasing(at 30-50 cm depth). Monthly change curves of them show that the concentration of soil CO2 increases from February to August, decreases from August to December, and decreases slightly from December to February of next year. The lowest and highest values of soil CO2 concentration occur in February and August, respectively. The correlation analysis also indicates that the effect of temperature on the soil CO2 concentration is the most significant. In addition, the difference of organic carbon under different land use and the rainfall factor coupled with the temperature can pose major influence on the change of soil CO2 concentration.

     

  • loading
  • [1]
    Yuan D X. Foreword for the special topic “Geological Processes in Carbon Cycle” [J]. Chinese Science Bulletin, 2011, 56(35): 3741-3742.
    [2]
    杜丽君,金涛,阮雷雷,等. 鄂南4种典型土地利用方式红壤CO2排放及其影响因素[J].环境科学,2007,28(7):1607-1613.
    [3]
    陈广生,田汉勤. 土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报,2007,31(2):189-204.
    [4]
    王丽丽,宋长春. 陆地生态系统碳循环对土地利用变化的响应[J].土壤通报,2010,41(1):216-221.
    [5]
    Lambin E F, Turner B L II, Geist H J, et al. The causes of land use and land-cover change: moving beyond the myths. Global Environmental Change, 2001, 11(4):261-269.
    [6]
    Watson R T, Bolin B .Land use, Land use change, an forestry: a special report of the IPCC. Cambridge, UK [J]. Cambridge University Press, 2000: 189-217.
    [7]
    Post W M, Emanuel W R, Zinke P J, et a.l. Soil carbon pools and world life zones[J]. Nature, 1982, 298(8): 156-159.
    [8]
    Schlesinger W H. Evidence from chronoseauence studies for a low carbon storage potential of soil [J].Nature, 1990, 348(15):232-234.
    [9]
    Houghton R A. Changes in the storage of terrestrial carbon since 1950[A].LAL R. Soils and Globe Change[C].London: CRC Press,1995,45-65.
    [10]
    Liu Y,Han S J,LI X F. The contribution of root respiration of Pinuskoraiensis seedlings total soil respiration under elevated CO2 concentrations[J].Journal of Forest Research,2004,15(3):187-191.
    [11]
    彭少麟.植物群落演替研究Ⅱ.动态研究的方法[J].生态学报,1994,2:117-119.
    [12]
    黄海澎.亚热带喀斯特峰林平原地区土壤CO2变化规律与土壤改良[M].贵州师范大学资源与环境科学系硕士学位论文,2001:11.
    [13]
    周志田, 成升魁, 刘允芬,等. 中国亚热带红壤丘陵区不同土地利用方式下土壤CO2排放规律初探[J]. 资源科学, 2002, 24(2):83-87.
    [14]
    张玉铭, 胡春胜, 张佳宝,等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4):966-975.
    [15]
    曾思博,蒋勇军.土地利用对岩溶作用碳汇的影响研究综述[J].中国岩溶,2016, 35(2):153-163.
    [16]
    何师意,周锦忠,曾飞跃.岩溶地下河流域地下水资源评价—以湖南湘西大龙洞为例[J].水文地质工程地质,2007,34(5):33-36.
    [17]
    朱明秋,梁彬,陈宏峰,等.湘西大龙洞岩溶流域农业生态环境与治理措施[J].中国岩溶,2005,24(3):220-226.
    [18]
    莫彬,曹建华,徐祥明,等.岩溶山区不同土地利用方式对土壤活性有机碳动态的影响[J].生态环境,2006,15(6):1224-1230.
    [19]
    杨玉盛,林鹏,郭剑芬,等.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解[J].生态学报,2003,23(7):1278-1289.
    [20]
    蓝家程,傅瓦利,袁波,等.岩溶山区土地利用方式对土壤活性有机碳及其分布的影响[J].中国岩溶,2011,(2):175-180
    [21]
    潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程:以桂林峰丛洼地岩溶系统为例[J].中国岩溶,1999,18(4):287-296.
    [22]
    梁福源,宋林华,王富昌,等.路南石林地区土壤空气中CO2浓度分布规律与土下溶蚀形态研究[J].中国岩溶,2000,19(2):180-187.
    [23]
    曹建华,袁道先,潘根兴,等.不同植被下土壤碳转移对岩溶动力系统中碳循环的影响[J].地球与环境,2004,32(1):90-96.
    [24]
    吴威,况明生,魏秉铎,等.亚热带岩溶山区植被演替和夏季土壤CO2浓度动态关系[J].西南师范大学学报(自然科学版),2004,29(2):289-293.
    [25]
    周运超,周习会,熊志斌,等.岩溶系统不同植被下土壤碳排放的温度效应[J].贵州科学,2004,22(4):21-40.
    [26]
    邓艳,覃星铭,蒋忠诚,等.表层岩溶动力系统中土壤水分及岩溶效应[J].应用生态学报,2009,20(7):1586-1590.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1978) PDF downloads(1512) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return