• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308
Citation: HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308

Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing

doi: 10.11932/karst20160308
  • Publish Date: 2016-06-25
  • To explore the variation characteristics of DICδ13C in the drip water and pool water in Furong cave, Chongqing, their influencing factors, and their impact on climate, the cave had been monitored from May 2013 to May 2014. The results showed that the CO2 concentration for both the soil air and cave air was high in summer and low in winter, which displayed significantly seasonal variations. They were affected by the combined effects of temperature and precipitation. The average DICδ13C value of the drip waters from five monitoring sites was -8.98‰, while the average DICδ13C value of the pool waters from two monitoring sites was -6.98‰, showing that the DICδ13C value of pool water was 2‰ heavier than that of the drip water. Corresponding to the arid climate in July 2013, the DICδ13C of cave water became heavier in October, while the light DICδ13C values indicated the delayed response to the humid climate. The DICδ13C of cave water showed a significant lag period to respond the climate change. The DICδ13C was dominantly affected by the soil CO2, also by bedrock dissolution, prior calcite precipitation and the opening degree of vadose zone. Our study demonstrates that on short time scales, the variations of DICδ13C of the drip water in Furong cave respond to the changes of local precipitation and the humidity conditions overlying the cave.

     

  • [1]
    Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite [J]. Nature, 1993, 364: 518-520.
    [2]
    Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice cave, Missouri, USA [J]. Science, 1998, 282: 1871-1874.
    [3]
    Fleitmann D, Burns S J, Mudelsee M. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 2003, 300: 1737-1739.
    [4]
    Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304: 575-578.
    [5]
    Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
    [6]
    Quade J, Ceriing T E, Bowman J R. Systematic variations in carbon and oxygen isotopic composition of Pedogenic soil carbonate along elevational transects in the southern Great Basin, United States [J]. Geological Society of America Bulletin, 1989, 101:464-475.
    [7]
    Dorale J A, Gonzálex L A, Reagan M K, et al. A high-resolution record of holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa [J]. Science, 1993, 258: 1626-1630.
    [8]
    Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter: Implications for δ13C variations in speleothems [J]. Geochimica et Cosmochimica Acta, 2001,65(20): 3443-3457.
    [9]
    Baldini J, McDermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England [J]. Earth and Planetary Science Letters, 2005, 240:486-494.
    [10]
    李红春, 顾德隆, Stott L D, 等. 北京石花洞500年来的δ13C记录与古气候变化及大气CO2 浓度变化的关系[J]. 中国岩溶, 1997, 16(4): 285-295.
    [11]
    Linge H, Lauritzen S E, Lundberg J, et al. Stable isotope stratigraphy of Holocene speleothems: Examples from a cave system in Rana, northern Norway [J]. Palaeogeography Palaeoclimatology,Palaeoecology, 2001, 167: 209-224.
    [12]
    Fairchild I J, Tuckwell G W, Baker A. Modelling of drip water hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies [J]. Journal of Hydrology, 2006, 321: 213-231.
    [13]
    刘肖, 杨琰, 彭涛, 等. 河南鸡冠洞洞穴水对极端气候的响应及其控制因素研究[J]. 环境科学, 2015, 36(5):1582-1589.
    [14]
    BarMatthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel [J]. Earth and Planetary Science Letters, 1999, 166(1-2):85-95.
    [15]
    Sp?tl C, Fairchild I J, Tooth A F. Cave air control on drip water geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves [J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
    [16]
    Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments [J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 753-768.
    [17]
    Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4140-4156.
    [18]
    衣成城, 李廷勇, 李俊云, 等. 芙蓉洞洞穴离子浓度和元素比值变化特征及其环境意[J]. 中国岩溶, 2011, 30(2): 99-103.
    [19]
    叶明阳, 李廷勇, 王建力, 等. 芙蓉洞次生碳酸盐沉积特征及与降水的关系研究[J]. 沉积学报, 2009, 27(4): 684-690.
    [20]
    向晓晶, 李廷勇, 王建力, 等. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J]. 中国岩溶, 2011, 30(2): 193-199.
    [21]
    Li J Y, Li T Y, Wang J L, et al. Characteristics and environmental significance of Ca, Mg, and Sr in the soil infiltrating water overlying the Furong Cave, Chongqing, China [J]. Science China, Earth Science, 2013,56(12): 2126-2134.
    [22]
    朱学稳. 芙蓉洞的次生化学沉积物[J]. 中国岩溶, 1994, 12(4): 357-368.
    [23]
    李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物 δ13C、δ18O特征及意义[J]. 地质论评, 2008, 54(5): 712-720.
    [24]
    Li T Y, Li H C, Xiang X J, et al. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area [J]. Science China, Earth Science, 2012, 55(4): 685-694.
    [25]
    蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J]. 干旱区地理, 2005, 28(3): 316-319.
    [26]
    Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation [J]. Geochimica et Cosmochimica Acta,2012,96:230-246.
    [27]
    Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
    [28]
    Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere [J]. Water Resources Research, 1984, 20(1): 153-156.
    [29]
    Milanolo S, Gabrovsek F. Analysis of carbon dioxide variation in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina [J]. Boundary-layer meteorology, 2009, 131(3): 479-493.
    [30]
    Cuezva S, FernadezCortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer [J]. Atmospheric Environment, 2011, 45(7): 1418-1427.
    [31]
    Baker A, Genty D. Environmental pressure on conserving cave speleothems: effects of changing surface land use and increased cave tourism [J]. Journal of Environmental Management, 1998, 53(2): 165-175.
    [32]
    Hartland A, Fairchild I J, Lead J R, et al. From soil to cave: Transport of trace metals by natural organic matter in karst drip waters [J]. Chemical Geology, 2012, 304(3):68-82.
    [33]
    Kowalczk A J, Froelich P N. Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? [J]Earth and Planetary Science Letters, 2010, 289(1): 209-219.
    [34]
    Hendy, C H. The isotopic geochemistry of speleothems-I. The Calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators [J]. Geochimica et Cosmochimica Acta, 1971, 35: 801-824.
    [35]
    Fohleister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water [J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5219-5228.
    [36]
    Johnson K R, Hu C Y, Belshaw N S, et al . Seasonal trace element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 394-407.
    [37]
    章程. 不同土地利用下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56: 136-140.
  • Relative Articles

    [1]WU Xia, PAN Moucheng, YIN Jianjun, WANG Zhijun, ZHU Xiaoyan, YANG Hui, ZHANG Meiliang, CAO Jianhua. Response of cave air and hydrogeochemistry of drip water to local climate in the Liangfeng cave,Guilin City[J]. CARSOLOGICA SINICA, 2021, 40(3): 513-520.
    [2]DAI Linyu, XIAO Shizhen, ZENG Cheng, YAN Wei, XIAO Hua, TAI Zhiqin. Characteristics and influencing factors of soil CO2 release under different land use types in the typical dolomite area of humid subtropical regions[J]. CARSOLOGICA SINICA, 2021, 40(4): 617-624.
    [3]SHI Xiao, YANG Yan, LI Yidong, TIAN Ning, Ye Zhimao, LI Jiancang, DUAN Junwei. Analysis of temporal and spatial variations of CO2 migration in the soil cave system in karst critical zone:A case study of Jiguan cave, western Henan[J]. CARSOLOGICA SINICA, 2021, 40(4): 580-591.
    [4]WU Zeyan, LUO Weiqun, JIANG Zhongcheng, ZHANG Cheng, HU Zhaoxin, CAO Jianhua. Effects of filter sludge and organic manure soil improvement on soil hydrochemistry and net CO2 consumption of dissolution of carbonate rocks[J]. CARSOLOGICA SINICA, 2019, 38(1): 60-69. doi: 10.11932/karst20190107
    [5]ZHANG Fengyi, YANG Xiaoxia, XIANG Xu, YANG Yifeng. Assessment on non-use value of cave tourism resources based on single-bounded dichotomy contingent valuation methods: A case study of Furong cave in Chongqing[J]. CARSOLOGICA SINICA, 2019, 38(1): 130-138. doi: 10.11932/karst20190115
    [6]LAN Funing, WANG Wenjuan, WU Huaying, JIANG Zhongcheng, QIN Xiaoqun, AN Shuqing. Temporal and spatial distributions of CO2 in soil and their influencing factors under different LUCC: A case study of the Dalongdong underground river drainage area[J]. CARSOLOGICA SINICA, 2017, 36(4): 427-432. doi: 10.11932/karst20170401
    [7]SHEN Wei, WANG Jian-li, WANG Jia-lu, JIANG Xian-shu, MAO Qing-ya. Hydrochemistry and δ13CDIC features of cave water in Naduo cave, Guizhou and their influencing factors[J]. CARSOLOGICA SINICA, 2016, 35(1): 98-105. doi: 10.11932/karst20160114
    [8]HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin. Deposition rates and element features of active sediments under drip water in Furong cave of Chongqing[J]. CARSOLOGICA SINICA, 2015, 34(3): 238-246. doi: 10.11932/karst20150306
    [9]ZHANG Cheng, XIE Yun-qiu, NING Liang-dan, YU Hong, WANG Jin-liang, LI Feng. Characteristics of δ13C in typical aquatic plants and carbon sequestration in the Huixian karst wetland,Guilin[J]. CARSOLOGICA SINICA, 2013, 32(3): 247-252. doi: 10.3969/j.issn.1001-4810.2013.03.001
    [10]CAO Min, JIANG Yong-jun, PU Jun-bing, ZHANG Xing-bo, QIU Shu-lan, YANG Ping-heng, WANG Zhi-jun, LI Huan-huan. Variations in DIC and δ13C DIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing[J]. CARSOLOGICA SINICA, 2012, 31(2): 145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006
    [11]GU Ning, WU Jiang-ying. Pale climate significance of δ13C in stalagmite from Nuanhe Cave, Liaoning[J]. CARSOLOGICA SINICA, 2012, 31(2): 107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001
    [12]SHI Ding-fang, YANG Xiao-xia, ZI Tao. Empirical research on evaluating the satisfaction of karst cave tourism interpretation system based on the IPA analysis method: In the case of Chongqing Furong Cave[J]. CARSOLOGICA SINICA, 2012, 31(1): 94-98. doi: 10.3969/j.issn.1001-4810.2012.01.016
    [13]QIU Shu-lan, JIANG Yong-jun, ZHANG Xing-bo, CAO Min, HU Yi-jun, LIAO Wen-e. Hydrochemistry and variation of δ13C DIC of the Qingmuguan underground river in Chongqing[J]. CARSOLOGICA SINICA, 2012, 31(3): 279-288. doi: 10.3969/j.issn.1001-4810.2012.03.009
    [14]XIANG Xiao-jing, LI Ting-yong, WANG Jian-li, LI Jun-yun, CHEN Yun-xuan, ZHOU Fu-li, ZHANG Tian-wen, BAI Ying. Geochemical characteristics of the overlying bedrock and soil, and its impact on hydro-chemistry of the drip waters in the Furong Cave, Chongqing[J]. CARSOLOGICA SINICA, 2011, 30(2): 193-199. doi: 10.3969/j.issn.1001-4810.2011.02.012
    [15]YI Cheng-cheng1, LI Ting-yong, LI Jun-yun, WANG Jian-li, XIANG Xiao-jing, BAI Ying, TANG Liang-liang, XIE Shi-you. The variation of element ratio and ion concentration of cave water in the Furong Cave and their implications for environment research[J]. CARSOLOGICA SINICA, 2011, 30(2): 200-207. doi: 10.3969/j.issn.1001-4810.2011.02.013
    [16]CAI Bing-gui, SHEN Lin-mei, ZHENG Wei, LI Ke-pu, BAI Yun-zhi, DONG Chun-zhi. Spatial distribution and diurnal variation in CO2 concentration, temperature and relative humidity of the cave air-A case study from Water Cave, Benxi, Liaoning, China[J]. CARSOLOGICA SINICA, 2009, 28(4): 348-354. doi: 10.3969/j.issn.1001-4810.2009.04.004
    [17]SONG Lin-hua, WEI Xiao-ning, LIANG Fu-yuan. EFFECT OF SPELEO-TOURISM ON THE CO2 CONTENT AND TEMPERATURE IN BAIYUN CAVE, LINCHENG, HEBEI[J]. CARSOLOGICA SINICA, 2003, 22(3): 230-235. doi: 10.3969/j.issn.1001-4810.2003.03.010
    [18]He Shiyi, Xu Shengyou, Zhang Meiliang. OBSERVATION ON SOLL CO2 CONCENTRATION,HYDROCHEMISTRY, AND THEIRRELATIONSHIP WITH KARST PROCESSES[J]. CARSOLOGICA SINICA, 1997, 16(4): 319-324.
    [19]Li Hongchun, Teh-Lung Ku, Lowell D. Sto t t, Yuan Daoxia n, Chen WenJi, Li Tieying. INTERANNUAL-RESOLUTIONδ13C RECORD OFSTALAGMITES AS PROXY FOR THE CHANGES INPRECIPITATION AND ATMOSPHERIC CO2IN SHIHUA CAVE, BEIJING[J]. CARSOLOGICA SINICA, 1997, 16(4): 285-295.
    [20]Li Bin. SIGNIFICANCE OF δ13C、δ18O OF SPELEOTHEMS FOR ENVIRONMENTAL CHANGES[J]. CARSOLOGICA SINICA, 1994, 13(1): 17-24.
  • Cited by

    Periodical cited type(9)

    1. 杨明凤,殷建军. 岩溶洞穴温度与当地多年平均气温的关系研究——以云南普者黑排龙洞为例. 中国岩溶. 2024(04): 780-795 . 本站查看
    2. 组里塞斯,杨勋林,王勇,胡明广,许奕滨. 重庆金佛洞石笋δ~(13)C记录的Heinrich6期间气候环境变化. 中国岩溶. 2023(03): 590-602 . 本站查看
    3. 周彦伶,杨晓霞. 基于AHP-灰色聚类方法的溶洞研学旅行利益相关者优先序研究-以重庆市芙蓉洞为例. 中国岩溶. 2023(03): 603-615 . 本站查看
    4. 张恒,周忠发,黄静,朱粲粲,丁圣君,石亮星,董慧. 岩溶洞穴滴水δ~(13)CDIC季节变化特征及其环境意义. 环境科学与技术. 2022(05): 135-144 .
    5. 马源,殷建军,袁道先. 洞穴滴水、石笋中元素及元素比值对气候环境变化响应的研究进展. 地质论评. 2022(05): 1897-1911 .
    6. 汪智军,李建鸿. 激光光谱技术在溶解无机碳碳同位素分析中的应用. 中国岩溶. 2021(04): 636-643 . 本站查看
    7. 汤云涛,周忠发,薛冰清,董慧,闫利会,朱粲粲,范宝祥,安丹. 岩溶洞穴水δ~(13)C_(DIC)时空变化及影响因素分析——以贵州双河洞系麻黄支洞为例. 环境化学. 2020(11): 3223-3234 .
    8. 梁明强,李俊云,周菁俐,张键,陈朝军. 重庆市芙蓉洞空气环境变化特征与影响因素分析. 长江流域资源与环境. 2019(04): 962-970 .
    9. 缪雄谊,郝玉培,章程,邹胜章,裴建国,陈宏峰. 洞穴新生碳酸钙模拟沉积速率的理论及展望. 科技通报. 2018(09): 1-7+12 .

    Other cited types(12)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1917) PDF downloads(1486) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return