Citation: | HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308 |
[1] |
Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite [J]. Nature, 1993, 364: 518-520.
|
[2] |
Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice cave, Missouri, USA [J]. Science, 1998, 282: 1871-1874.
|
[3] |
Fleitmann D, Burns S J, Mudelsee M. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 2003, 300: 1737-1739.
|
[4] |
Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304: 575-578.
|
[5] |
Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
|
[6] |
Quade J, Ceriing T E, Bowman J R. Systematic variations in carbon and oxygen isotopic composition of Pedogenic soil carbonate along elevational transects in the southern Great Basin, United States [J]. Geological Society of America Bulletin, 1989, 101:464-475.
|
[7] |
Dorale J A, Gonzálex L A, Reagan M K, et al. A high-resolution record of holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa [J]. Science, 1993, 258: 1626-1630.
|
[8] |
Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter: Implications for δ13C variations in speleothems [J]. Geochimica et Cosmochimica Acta, 2001,65(20): 3443-3457.
|
[9] |
Baldini J, McDermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England [J]. Earth and Planetary Science Letters, 2005, 240:486-494.
|
[10] |
李红春, 顾德隆, Stott L D, 等. 北京石花洞500年来的δ13C记录与古气候变化及大气CO2 浓度变化的关系[J]. 中国岩溶, 1997, 16(4): 285-295.
|
[11] |
Linge H, Lauritzen S E, Lundberg J, et al. Stable isotope stratigraphy of Holocene speleothems: Examples from a cave system in Rana, northern Norway [J]. Palaeogeography Palaeoclimatology,Palaeoecology, 2001, 167: 209-224.
|
[12] |
Fairchild I J, Tuckwell G W, Baker A. Modelling of drip water hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies [J]. Journal of Hydrology, 2006, 321: 213-231.
|
[13] |
刘肖, 杨琰, 彭涛, 等. 河南鸡冠洞洞穴水对极端气候的响应及其控制因素研究[J]. 环境科学, 2015, 36(5):1582-1589.
|
[14] |
BarMatthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel [J]. Earth and Planetary Science Letters, 1999, 166(1-2):85-95.
|
[15] |
Sp?tl C, Fairchild I J, Tooth A F. Cave air control on drip water geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves [J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
|
[16] |
Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments [J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 753-768.
|
[17] |
Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4140-4156.
|
[18] |
衣成城, 李廷勇, 李俊云, 等. 芙蓉洞洞穴离子浓度和元素比值变化特征及其环境意[J]. 中国岩溶, 2011, 30(2): 99-103.
|
[19] |
叶明阳, 李廷勇, 王建力, 等. 芙蓉洞次生碳酸盐沉积特征及与降水的关系研究[J]. 沉积学报, 2009, 27(4): 684-690.
|
[20] |
向晓晶, 李廷勇, 王建力, 等. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J]. 中国岩溶, 2011, 30(2): 193-199.
|
[21] |
Li J Y, Li T Y, Wang J L, et al. Characteristics and environmental significance of Ca, Mg, and Sr in the soil infiltrating water overlying the Furong Cave, Chongqing, China [J]. Science China, Earth Science, 2013,56(12): 2126-2134.
|
[22] |
朱学稳. 芙蓉洞的次生化学沉积物[J]. 中国岩溶, 1994, 12(4): 357-368.
|
[23] |
李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物 δ13C、δ18O特征及意义[J]. 地质论评, 2008, 54(5): 712-720.
|
[24] |
Li T Y, Li H C, Xiang X J, et al. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area [J]. Science China, Earth Science, 2012, 55(4): 685-694.
|
[25] |
蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J]. 干旱区地理, 2005, 28(3): 316-319.
|
[26] |
Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation [J]. Geochimica et Cosmochimica Acta,2012,96:230-246.
|
[27] |
Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
|
[28] |
Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere [J]. Water Resources Research, 1984, 20(1): 153-156.
|
[29] |
Milanolo S, Gabrovsek F. Analysis of carbon dioxide variation in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina [J]. Boundary-layer meteorology, 2009, 131(3): 479-493.
|
[30] |
Cuezva S, FernadezCortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer [J]. Atmospheric Environment, 2011, 45(7): 1418-1427.
|
[31] |
Baker A, Genty D. Environmental pressure on conserving cave speleothems: effects of changing surface land use and increased cave tourism [J]. Journal of Environmental Management, 1998, 53(2): 165-175.
|
[32] |
Hartland A, Fairchild I J, Lead J R, et al. From soil to cave: Transport of trace metals by natural organic matter in karst drip waters [J]. Chemical Geology, 2012, 304(3):68-82.
|
[33] |
Kowalczk A J, Froelich P N. Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? [J]Earth and Planetary Science Letters, 2010, 289(1): 209-219.
|
[34] |
Hendy, C H. The isotopic geochemistry of speleothems-I. The Calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators [J]. Geochimica et Cosmochimica Acta, 1971, 35: 801-824.
|
[35] |
Fohleister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water [J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5219-5228.
|
[36] |
Johnson K R, Hu C Y, Belshaw N S, et al . Seasonal trace element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 394-407.
|
[37] |
章程. 不同土地利用下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56: 136-140.
|
1. | 杨明凤,殷建军. 岩溶洞穴温度与当地多年平均气温的关系研究——以云南普者黑排龙洞为例. 中国岩溶. 2024(04): 780-795 . ![]() | |
2. | 组里塞斯,杨勋林,王勇,胡明广,许奕滨. 重庆金佛洞石笋δ~(13)C记录的Heinrich6期间气候环境变化. 中国岩溶. 2023(03): 590-602 . ![]() | |
3. | 周彦伶,杨晓霞. 基于AHP-灰色聚类方法的溶洞研学旅行利益相关者优先序研究-以重庆市芙蓉洞为例. 中国岩溶. 2023(03): 603-615 . ![]() | |
4. | 张恒,周忠发,黄静,朱粲粲,丁圣君,石亮星,董慧. 岩溶洞穴滴水δ~(13)CDIC季节变化特征及其环境意义. 环境科学与技术. 2022(05): 135-144 . ![]() | |
5. | 马源,殷建军,袁道先. 洞穴滴水、石笋中元素及元素比值对气候环境变化响应的研究进展. 地质论评. 2022(05): 1897-1911 . ![]() | |
6. | 汪智军,李建鸿. 激光光谱技术在溶解无机碳碳同位素分析中的应用. 中国岩溶. 2021(04): 636-643 . ![]() | |
7. | 汤云涛,周忠发,薛冰清,董慧,闫利会,朱粲粲,范宝祥,安丹. 岩溶洞穴水δ~(13)C_(DIC)时空变化及影响因素分析——以贵州双河洞系麻黄支洞为例. 环境化学. 2020(11): 3223-3234 . ![]() | |
8. | 梁明强,李俊云,周菁俐,张键,陈朝军. 重庆市芙蓉洞空气环境变化特征与影响因素分析. 长江流域资源与环境. 2019(04): 962-970 . ![]() | |
9. | 缪雄谊,郝玉培,章程,邹胜章,裴建国,陈宏峰. 洞穴新生碳酸钙模拟沉积速率的理论及展望. 科技通报. 2018(09): 1-7+12 . ![]() |