• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 35 Issue 2
Apr.  2016
Turn off MathJax
Article Contents
HUANG Qi-bo, QIN Xiao-qun, LIU Peng-yu, ZHANG Lian-kai, SU Chun-tian. Proportion of pedogenic carbonates and the impact on carbon sink calculation in karst area with semiarid environment[J]. CARSOLOGICA SINICA, 2016, 35(2): 164-172. doi: 10.11932/karst20160205
Citation: HUANG Qi-bo, QIN Xiao-qun, LIU Peng-yu, ZHANG Lian-kai, SU Chun-tian. Proportion of pedogenic carbonates and the impact on carbon sink calculation in karst area with semiarid environment[J]. CARSOLOGICA SINICA, 2016, 35(2): 164-172. doi: 10.11932/karst20160205

Proportion of pedogenic carbonates and the impact on carbon sink calculation in karst area with semiarid environment

doi: 10.11932/karst20160205
  • Publish Date: 2016-04-25
  • Quantitative evaluation of proportion and source of pedogenic carbonates in karst area with semiarid environment have contributed to understand the mechanism of soil system affecting karst process, which has great significance in karst carbon cycle research. Soil samples were collected from soil profile of forest land, abandoned farmland and brushland, in a typical small watershed in semi-arid area, southwest of Jinzhong basin, Shanxi Province, China, for analysis of content and δ13C of soil carbonates, content and δ13C of CO2 and δ13C of parent rocks, hence to explore their variation with depth and controlling factors, and quantify ratio of pedogenic carbonates in soil carbon. Results show that in the upper layer(0 to 50 cm), the content of soil carbonates and CO2 increase with depth, while the δ13C of soil carbonates and CO2 decrease with depth. In the lower layer (50-70 cm), the content of soil carbonates and CO2 decrease with depth, and the δ13C of soil carbonates and CO2 increase with depth. The content and δ13C of soil carbonates are mainly controlled by pedogenic carbonates proportion, while the content and δ13C of CO2 are mainly affected by atmospheric CO2 and soil CO2 generated by organic matter decomposition in the upper layer, and impacted by karst process in soil-rock interface in the lower layer. The average proportion of pedogenic carbonates is 52%, 42%, 32% for abandoned farmland, forest land and brushland, respectively. This paper confirmed that the lithogenic carbonates can transform to pedogenic carbonates in north karst area with semiarid environment.

     

  • loading
  • [1]
    IPCC. Climate change 2007: Climate change impacts, adaptation and vulnerability[R]. Cambridge, 2007.
    [2]
    许乃政, 刘红樱, 魏峰. 土壤碳库及其变化研究进展[J]. 江苏农业科学, 2011, 39(2): 1-5.
    [3]
    King D A. Environment. Climate change science: adapt, mitigate, or ignore?[J]. Science, 2004, 303(5655):176-7.
    [4]
    曲建升, 孙成权, 张志强, 等. 全球变化科学中的碳循环研究进展与趋向[J]. 地球科学进展, 2003, 18(6):980-987.
    [5]
    姚冠荣, 高全洲. 河流碳循环对全球变化的响应与反馈[J]. 地理科学进展, 2005, 24(5):50-60.
    [6]
    Falkowski P, Scholes R J, Boyyle E. global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290:291-296.
    [7]
    徐小锋, 宋长春. 全球碳循环研究中“碳失汇”研究进展[J]. 中国科学院研究生院学报, 2004, 21(2):145-152.
    [8]
    袁道先. 中国岩溶学[M]. 北京,地质出版社.1993.
    [9]
    Jiang Z C, Yuan D X. CO2 source-sink in karstprocesses in karst areas of China[J]. Episodes, 1999, 22(1):33-35.
    [10]
    Yuan D X. The carbon cycle in karst[J]. Z Geomorph N F, 1997,(Suppl-Bd 108):91-102.
    [11]
    袁道先, 刘再华. 碳循环与岩溶地质环境[M]. 北京: 科学出版社, 2003:97-99.
    [12]
    蒋忠诚, 蒋小珍, 雷明堂. 运用GIS和溶蚀试验数据估算中国岩溶区大气CO2的汇[J].中国岩溶,2000,19(3):212-217.
    [13]
    徐胜友, 蒋忠诚. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-956.
    [14]
    袁道先,蔡桂鸿.岩溶环境学[M].北京:重庆出版社,1988.
    [15]
    章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J].地质学报,2002, 76(4): 566-570.
    [16]
    梁永平,王维泰, 段光武. 鄂尔多斯盆地周边地区野外溶蚀试验结果讨论[J].中国岩溶,2007, 26(4):315-320.
    [17]
    黄奇波,覃小群,刘朋雨,等.半干旱区岩溶碳汇原位监测方法适宜性研究[J].吉林大学学报:地球科学版,2015,45(1):240-246.
    [18]
    Zhang C. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 2011, 56(35):3759-3765.
    [19]
    黄奇波, 覃小群, 刘朋雨, 等. 北方不同植被下土壤岩石试片的溶蚀速率及碳汇分析:以山西汾阳地区为例[J]. 中国岩溶, 2013, 32(3): 258-265.
    [20]
    许文强, 陈曦, 罗格平,等. 土壤碳循环研究进展及干旱区土壤碳循环研究展望[J]. 干旱区地理, 2011, 34(4):614-620.
    [21]
    Kohut C, Muehlenbachs K, Dudas M J. Authigenic dolomite in a saline soil in alberta, Canada[J]. Soil Science Society of America Journal, 1995, 59(5): 1499-1504.
    [22]
    杨黎芳, 李贵桐.土壤无机碳研究进展[J].土壤通报,2011, 42(4):986-990.
    [23]
    杨黎芳,李贵桐,李保国.土壤发生性碳酸盐碳稳定性同位素模型及其应用[J].地球科学进展, 2006,21(9):973-981.
    [24]
    韩家懋, 姜文英, 刘东生,等. 黄土碳酸盐中古气候变化的同位素记录[J]. 中国科学(D辑:地球科学), 1996(5):399-404.
    [25]
    陈忠, 马海州, 曹广超, 等.黄土碳酸盐的研究[J]. 盐湖研究, 2006, 14(4):66-72.
    [26]
    黄成敏, 王成善, 艾南山. 土壤次生碳酸盐碳氧稳定同位素古环境意义及应用[J]. 地球科学进展, 2003, 18(4):619-625.
    [27]
    张林,孙向阳, 高程达, 等. 荒漠草原土壤次生碳酸盐形成和周转过程中固存CO2的研究[J].土壤学报, 2011,48(3):578-586.
    [28]
    鲍士旦. 土壤农化分析[M].北京: 中国农业出版社,1999:34-35.
    [29]
    陶成, 把立强, 李广友,等. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用[J]. 岩矿测试, 2006, 25(4):334-336.
    [30]
    潘根兴. 中国干旱性地区土壤发生性碳酸盐及其在陆地系统碳转移上的意义[J]. 南京农业大学学报, 1999, 22(1):51-57.
    [31]
    潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报, 1999, 15(5):330-332.
    [32]
    顾兆炎,韩家懋,刘东生.中国第四纪黄土地球化学研究进展[J]. 第四纪研究, 2000, 20(1):41-45.
    [33]
    Yang W, Amundson R, Trumbore S. A model for soil 14CO2, and its implications for using 14C to date pedogenic carbonate[J]. Geochimica Et Cosmochimica Acta, 1994, 58(1):393-399.
    [34]
    NordtL C, W ilding L P, Hallmark C T, et al. Carbon isotope composition of soil carbonates and their use in studying pedogenesis [C]∥Yamasaki S, Boutton TW, eds. Mass Spectrometry of Soils. New York: MarcelDekker Inc, 1996: 133-154.
    [35]
    Mermut A R, Amoundson R, Cerling T E. The use of stable isotopes in studying carbonate dynamics in soils[C]∥Lal R, Kimble J, Eswaran H, eds. Global Climate Change and Pedogenic Carbonates. Florida: LewisPublishers, 2000: 65-85.
    [36]
    曹建华, 周莉, 杨慧, 等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3):431-437.
    [37]
    Hinkle M E. Environmental conditions affecting concentrations of He,CO2,O2and N2 in soil gases[J]. Applied Geochemistry, 1994, 9(1)::53-63.
    [38]
    Bruulsema T W, Duxbury J M. Simultaneous Measurement of Soil Microbial Nitrogen, Carbon, and Carbon Isotope Ratio[J]. Soilence Society of America Journal, 1996, 60(6):1787-1791.
    [39]
    Pankina R G. Origin of CO2 in petroleum gases (from the isotopic composition of carbon)[J]. International Geology Review, 1979, 21(5):535-539.
    [40]
    郑乐平. 黔中岩溶地区土壤CO2的稳定碳同位素组成研究[J]. 中国科学, 1999,29(6):514-519.
    [41]
    郑乐平,欧阳自远,张晓岚,等.黔中岩溶地区草地土壤CO2的稳定碳同位素组成[J].环境科学, 2000, 21(5):38-41.
    [42]
    Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth & Planetary Science Letters, 1984, 71(2):229-240.
    [43]
    Salomons W, Mook W G. Isotope geochemistry of carbonate dissolution and reprecipitation in soils[J]. Soil Science, 1976,122:15-24.
    [44]
    Nordt L C, Hallmark C T, Wilding L P, et al. Quantifying pedogenic carbonate accumulations using stable carbon isotopes[J]. Geoderma, 1998, 82:115-136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1701) PDF downloads(1340) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return