• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 35 Issue 2
Apr.  2016
Turn off MathJax
Article Contents
REN Kun, CHEN Zhi-bing, PAN Xiao-dong, ZHANG Mei. Environmental geochemistry characteristics of heavy metals and ecological risk assessment of surface sediments from Nanshan Laolongdong subterranean river, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(2): 144-152. doi: 10.11932/karst20160203
Citation: REN Kun, CHEN Zhi-bing, PAN Xiao-dong, ZHANG Mei. Environmental geochemistry characteristics of heavy metals and ecological risk assessment of surface sediments from Nanshan Laolongdong subterranean river, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(2): 144-152. doi: 10.11932/karst20160203

Environmental geochemistry characteristics of heavy metals and ecological risk assessment of surface sediments from Nanshan Laolongdong subterranean river, Chongqing

doi: 10.11932/karst20160203
  • Publish Date: 2016-04-25
  • The surface sediment was collected from a karst subterranean river in Nanshan, Chongqing, in December 2013.These samples were analyzed by using Inductively Coupled Plasma Mass Spectrometry(ICP-MS)and Inductively Coupled Plasma Optical Emission Spectrometry(ICP-OES), respectively, to determine the content of heavy metals(Mn, Pb, Cu, As and Cr)in the sediments. Meanwhile, the geo-accumulation pollution index and potential ecological risk index were used to assess the ecological risk of heavy metals in sediments, so as to provide a scientific basis for the development of urban construction and protection of karst groundwater. Results showed that Mn, Pb, Cu, As and Cr are enriched in Laolongdong subterranean river sediments, with the enrichment of these heavy metals as Cr>Cu>Mn>Pb>As. It was TOC (total organic carbon)that controlled the sediments heavy metal contents, but not pH and particle size of sediments. Meanwhile, TOC also controlled SAC (stability assessment code), which has an effect on the migration of the heavy metals, and influences the quality of overlying water. In general, heavy metals in surface sediments from Laolongdong were in slightly-polluted state evaluated by geo-accumulation pollution index, and implied a low probability of toxic effect evaluated by potential ecological risk index.

     

  • loading
  • [1]
    Burton G A. Metal bioavailability and toxicity in sediments[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(9-10): 852-907.
    [2]
    Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: remobilisation and demobilisation[J]. Science of the Total Environment, 2001, 266(1): 195-202.
    [3]
    Daskalakis K D, O'Connor T P. Distribution of chemical concentrations in US coastal and estuarine sediment[J]. Marine Environmental Research, 1995, 40(4): 381-398.
    [4]
    Vukosav P, Mlakar M, Cukrov N, et al. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia)[J]. Environmental Science and Pollution Research, 2014, 21(5): 3826-3839.
    [5]
    Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study[J]. Science of the Total Environment, 2004, 330(s1–3):115-129.
    [6]
    Chapman P M, Wang F. Assessing sediment contamination in estuaries[J]. Environmental Toxicology and Chemistry, 2001, 20(1): 3-22.
    [7]
    方淑波, 贾晓波, 安树青, 等. 盐城海岸带土壤重金属潜在生态风险控制优先格局[J]. 地理学报, 2012, 67(1): 27-35.
    [8]
    Solomon M M, Jonah A E, Ano A O. Study on the physico-chemical properties and heavy metal status of sediment samples from Ohii Miri river in Abia State, Nigeria[J]. Fountain Journal of Natural and Applied Sciences, 2014, 3(1):29-43.
    [9]
    李杰, 王英辉, 刘枝刚, 等. 漓江桂林市区段沉积物重金属环境地球化学特征[J]. 地球与环境, 2011, 39(4): 456-463.
    [10]
    陈春霄, 姜霞, 战玉柱, 等. 太湖表层沉积物中重金属形态分布及其潜在生态风险分析[J]. 中国环境科学, 2011, 31(11): 1842-1848.
    [11]
    Schneider L, Maher W, Potts J, et al. Recent history of sediment metal contamination in Lake Macquarie, Australia, and an assessment of ash handling procedure effectiveness in mitigating metal contamination from coal-fired power stations[J]. Science of The Total Environment, 2014, 490: 659-670.
    [12]
    Fan W, Xu Z, Wang W X. Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete[J]. Environmental Pollution, 2014, 191: 50-57.
    [13]
    Nabavi S M B, Parsa Y, Hosseini M,et al. Heavy Metal Concentration in Sediment from North of Persian Gulf[J]. World Applied Sciences Journal, 2014, 29(6): 792-795.
    [14]
    Ravbar N, Goldscheider N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment[J]. Hydrogeology Journal, 2009, 17(3): 725-733.
    [15]
    罗燕, 秦延文, 张雷, 等. 大伙房水库表层沉积物重金属污染分析与评价[J]. 环境科学学报, 2011, 31(5): 987-995.
    [16]
    郭芳, 王文科, 姜光辉, 等. 岩溶地下河污染物运移特征及自净能力[J]. 水科学进展, 2014, 25(3): 414-419.
    [17]
    Yang P H, Yuan D X, Ye X C, et al. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin, 2013, 58(20): 2488-2496.
    [18]
    Ford D, Williams P D. Karst hydrogeology and geomorphology[J].John Wiley & Sons Inc Press, New York, 2007.
    [19]
    任坤, 师阳, 李晓春, 等. 典型岩溶槽谷区地下水化学特征及地球化学敏感性分析[J]. 中国岩溶, 2014, 33(1):15-21.
    [20]
    任坤, 杨平恒, 江泽利, 等. 降雨期间岩溶城镇区地下河水重金属变化特征及来源解析[J]. 环境科学, 2015, 36(4):1270-1276.
    [21]
    任坤, 杨平恒, 杜伟, 等. 重庆老龙洞地下河间隙水重金属污染及毒性评估[J]. 中国岩溶, 2014, 33(2):231-237.
    [22]
    Rauret G, LopezSanchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61.
    [23]
    Singh K P, Mohan D, Singh V K, et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India[J]. Journal of Hydrology, 2005, 312(1):14-27.
    [24]
    Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(3):108-118.
    [25]
    Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001.
    [26]
    徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115.
    [27]
    王健康, 高博, 周怀东, 等. 三峡库区蓄水运用期表层沉积物重金属污染及其潜在生态风险评价[J]. 环境科学, 2012, 33(5): 1693-1699.
    [28]
    任坤, 梁作兵, 于正良, 等. 重庆南山老龙洞地下河系统重金属分布、迁移及自净能力[J]. 环境科学, 2015, 36(11): 162-169.
    [29]
    重庆市环境科研检测所, 西南农学院土化系,西南师范学院环境科研组. 重庆地区土壤中11种元素背景值的调查研究[J]. 重庆环境科学, 1982, (4):4-8.
    [30]
    贾亚男, 袁道先. 土地利用变化对水城盆地岩溶水水质的影响[J].地理学报, 2003, 58(6):831-838.
    [31]
    余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐的形态分布特征与评价[J]. 环境科学, 2010, 31(4): 961-968.
    [32]
    吴斌, 宋金明, 李学刚. 黄河口表层沉积物中重金属的环境地球化学特征[J]. 环境科学, 2013, 34(4): 1324-1332.
    [33]
    贺跃, 胡艳华, 王秋潇,等. 大冶大港河水系沉积物中重金属来源分析[J]. 地球化学, 2011, 40(3): 258-265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2068) PDF downloads(897) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return