• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 34 Issue 5
Oct.  2015
Turn off MathJax
Article Contents
LIU Meng-jiao, WANG Yong, ZHANG Yao-hua, LI Guo. Variation characteristics of stable isotopes in different water bodies in Southwestern China monsoon area——A case study of Beibei District,Chongqing[J]. CARSOLOGICA SINICA, 2015, 34(5): 486-494. doi: 10.11932/karst20150509
Citation: LIU Meng-jiao, WANG Yong, ZHANG Yao-hua, LI Guo. Variation characteristics of stable isotopes in different water bodies in Southwestern China monsoon area——A case study of Beibei District,Chongqing[J]. CARSOLOGICA SINICA, 2015, 34(5): 486-494. doi: 10.11932/karst20150509

Variation characteristics of stable isotopes in different water bodies in Southwestern China monsoon area——A case study of Beibei District,Chongqing

doi: 10.11932/karst20150509
  • Publish Date: 2015-10-25
  • The hydrogen and oxygen isotopes of precipitation water in Beibei District of Chongqing and water in Longtanzi reservoir in upper stream Maanxi were investigated during a hydrologic year (2014) ,to explore the relationship of δD and δ18O between precipitation and the reservoir water.It was found that the correlation between δD and δ18O in the precipitation is extremely significant, namely, δD=8.82δ18O+18.97,r=0.99,n=101,P<0.01.The slope and intercept of local meteoric water line are both greater than the global meteoric water line and China meteoric water line. The result suggested that southwest monsoon and southeast monsoon have alternative influence on local precipitation;(2) Both δD Dandδ18O values in rain water exhibited significant seasonal variations, having lower values in summer and higher ones in winter;(3)The δ value and precipitation as well as temperature assumed negative correlation. The precipitation amount effect of the δD and δ18O in the precipitation was very profound, which concealed the temperature effect;(4)The δD and δ18O in reservoir had a great correlation and they fell near the global meteoric water line and local meteoric water line. In addition, the excess deuterium (d) in the reservoir water and in the precipitation showed very similar patterns. The result indicated that the precipitation recharged the reservoir. However, the variety range of the δD and δ18O from reservoir was far less than precipitation. The result suggested that the reservoir was not only recharged by precipitation, but also by soil water and groundwater.

     

  • loading
  • [1]
    Brezgunov V S, Derevyagina Y U, Chizhov A B. Using natural stable hydrogen and oxygen isotopes for studying the conditions of ground ice formation [J]. Water Resources, 2001, 28(6): 604-608.
    [2]
    Dansgaard W. Stable isotopes in precipitation [J].Tellus, 1964,16(4):436-468.
    [3]
    Yurteever Y, Gat J R. Stable isotope hydrology: Deuterium and Oxygen-18 in the water cycle [R]. Vienna: International Atomic Energy Agency, 1981:103-142.
    [4]
    Tian L, Yao T, Macclune K, et al. Stable isotopic variations in West China: A consideration of moisture sources[J]. Journal of Geophysical Research,Atomspheres,2007, 112( D10):185-194.
    [5]
    Hoffmann G, Werner M, Heimann M. Water isotope module of the ECHAM atmospheric general circulation model: A stud yon timescales from days to several years[J]. Journal of Geophysical Research, 1998, 103(014): 16871-16896.
    [6]
    Jouzel J, Russell G L, Suozzo R J. Simulations of the δD and δ18O atmospheric cycles using the NASA-GISS General Circulation Model-The seasonal cycle for present day conditions[J]. Journal of Geophysical Research, 1987, 92: 14739-14760.
    [7]
    Noone D C, Simmonds I. Associations between δ18O of water and climate parameters in a simulation of atmospheric circulation for 1979-95[J]. Journal of Climate, 2002, 15: 3150-3169.
    [8]
    Yoshimura K, Oki T, Ohte N, et al. A quantitative analysis of short-term δ18O variability with a Rayleigh-type isotope circulation model[J]. Journal of Geophysical Research Atmospleies , 2003, 108( D20) 4647, doi: 10.1029 /2003JD003477.
    [9]
    Lisa M B , Frank M D, James U L , et al. An investigation of the controls on Irish precipitation 18O values on monthly and event timescales[J]. Climate Dynamics, 2010, 35(6) : 977-993.
    [10]
    陈中笑, 程军, 郭品文, 等. 中国降水稳定同位素的分布特点及其影响因素[J].大气科学学报,2010,33(6):667-679.
    [11]
    柳鉴容, 宋献方, 袁国富, 等. 我国南部夏季季风降水水汽来源的稳定同位素证据[J]. 自然资源学报, 2007, 22(6):1004-1012.
    [12]
    李广, 章新平, 吴华武, 等. 云南大气降水中δ18O与气象要素及水汽来源之间的关系[J]. 自然资源学报, 2014, 29(6):1043-1052.
    [13]
    王永森, 董四方, 陈益钟. 基于温度与湿度的大气降水同位素特征影响因素分析[J]. 中国农村水利水电, 2013, 6:12-15.
    [14]
    涂林玲, 王华, 冯玉梅. 桂林地区大气降水的δD和δ18O同位素的研究[J]. 中国岩溶, 2004, 23(4):48-53.
    [15]
    李玄, 王建力, 李俊云, 等. 重庆芙蓉洞上覆泉水—滴水的氢氧稳定同位素变化研究[J]. 地下水, 2013, 35(2):8-12.
    [16]
    蒲俊兵. 重庆岩溶地下水氢氧稳定同位素地球化学特征[J]. 地球学报, 2013, 34(6):713-722.
    [17]
    李廷勇, 李红春, 沈川洲, 等. 2006~2008年重庆大气降水δD和δ18O特征初步分析[J]. 水科学进展, 2010, 25(6):757-764.
    [18]
    黄一民, 章新平, 唐方雨, 等. 长沙大气降水中稳定同位素变化及过量氘指示水汽来源[J]. 自然资源学报, 2013, 28(11):1945-1954.
    [19]
    柳艳菊, 丁一汇, 赵南. 1998年南海季风爆发时期中尺度对流系统的研究:I中尺度对流系统发生发展的大尺度条件[J]. 气象学报, 2005, 63(4):49-60.
    [20]
    吴华武, 章新平, 关华德, 等.不同水汽来源对湖南长沙地区降水中δD、δ18O的影响[J].自然资源学报, 2012, 27(8):1404-1414.
    [21]
    Araguás-Araguás L, Froehlich K, Rozanski K. Stable isotope composition of precipitation over southeast Asia[J]. J Geophys Res, 1998, 103(D22):28721-28742.
    [22]
    Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703,doi: 10.1126/science. 133.3465. 1702.
    [23]
    丁悌平. 氢氧同位素地球化学[M]. 北京:地质出版社, 1980.
    [24]
    郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983,13:801-806.
    [25]
    章新平, 姚檀栋. 我国降水中δ18O的分布特点[J]. 地理学报, 1998, 53(4):70-78.
    [26]
    刘进达, 赵迎昌, 刘恩凯, 等. 中国大气降水稳定同位素时—空分布规律探讨[J]. 勘察科学技术, 1997, (3):34-39.
    [27]
    武亚遵, 万军伟, 林云. 湖北宜昌西陵峡地区大气降雨氢氧同位素特征分析[J]. 地质科技情报, 2011, 30(3):93-97.
    [28]
    卫克勤, 林瑞芬. 论季风气候对我国雨水同位素组成的影响[J]. 地球化学, 1994, 23(1):33-41.
    [29]
    章新平, 刘晶淼, 姚檀栋, 等. 中纬度地区混合云中稳定同位素分馏的数学模拟:以乌鲁木齐降水为例[J]. 气象学报, 2003, 61(1):95-105.
    [30]
    卫克勤, 林瑞芬, 王志祥. 北京地区降水中的氘、氧-18、氚含量[J]. 中国科学(B辑化学生物学农学医学地学), 1982, (8):754-757.
    [31]
    宋德众. 福建海岛气候[M]. 北京:气象出版社, 1996.
    [32]
    蔡明刚, 黄奕普, 陈敏, 等. 厦门大气降水的氢氧同位素研究[J]. 台湾海峡, 2000, 19(4):446-453.
    [33]
    王海波,李廷勇,袁娜,等.重庆金佛山羊口洞滴水δD和δ18O变化特征及其环境意义[J]. 中国岩溶, 2014, 33(2):146-155.
    [34]
    章新平, 关华德, 孙治安, 等. 云南降水中稳定同位素变化的模拟和比较[J]. 地理科学, 2012, 32(1):121-128.
    [35]
    Posmentier E S, Feng X H, Zhao M X. Seasonal variations of precipitation δ18O in eastern Asia[J]. Journal of Geophysical Research Aturospheres,2004,109(D23):D23106.
    [36]
    章新平, 施雅风, 姚檀栋. 青藏高原东北部降水中δ18O的变化特征[J]. 中国科学(B辑化学生命科学地学), 1995, (5):540-547.
    [37]
    刘忠方, 田立德, 姚檀栋, 等. 水汽输送对雅鲁藏布江流域降水中稳定同位素的影响[J].地球科学进展, 2007, 22(8):842-850.
    [38]
    田立德, 姚檀栋, 蒲健辰, 等.拉萨夏季降水中氧稳定同位素变化特征[J]. 冰川冻土, 1997, 19(4):7-13.
    [39]
    王锐, 刘文兆, 宋献方. 长武塬区大气降水中氢氧同位素特征分析[J]. 水土保持学报, 2008, 22(3):56-59.
    [40]
    郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社, 2000.
    [41]
    Mook W G. Environmental isotopes in the hydrological cycle: principles and applications [C]. IAEA Technical Documents in Hydrology. Paris: UNESCO, 2001.
    [42]
    田立德,姚檀栋,孙维贞,等. 青藏高原南北降水中δD和δ18O关系及水汽循环[J]. 中国科学(D辑:地球科学), 2001,(3):214-220.
    [43]
    章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009, 31(4):613-619.
    [44]
    田立德, 姚檀栋, 沈永平, 等. 青藏高原那曲河流域降水及河流水体中氧稳定同位素研究[J]. 水科学进展, 2002, 13(2):206-210.
    [45]
    Gao J, Tian L D, Liu Y Q, et al. Oxygen isotope variation in the water cycle of the Yamdroktso Lake basin in southern Tibetan Plateau[J]. Chinese Science Bulletin,2009, 54(16):2758-2765.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2541) PDF downloads(1457) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return