• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 34 Issue 3
Jun.  2015
Turn off MathJax
Article Contents
HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin. Deposition rates and element features of active sediments under drip water in Furong cave of Chongqing[J]. CARSOLOGICA SINICA, 2015, 34(3): 238-246. doi: 10.11932/karst20150306
Citation: HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin. Deposition rates and element features of active sediments under drip water in Furong cave of Chongqing[J]. CARSOLOGICA SINICA, 2015, 34(3): 238-246. doi: 10.11932/karst20150306

Deposition rates and element features of active sediments under drip water in Furong cave of Chongqing

doi: 10.11932/karst20150306
  • Publish Date: 2015-06-25
  • To explore the variation, control mechanism and environmental significance of deposition rates and elements in the recent sediments under drip water in the Furong cave, Chongqing, five drip sites were monitored continuously from November 2010 to November 2013, and recent sediments were collected for the deposition rate calculation and determination of trace elements. The results show distinct correlations among the deposition rates and the discharges of drip water, pH, Ca2+ concentration, PCO2 of the five drip sites. The deposition rates of MP4 and MP5 are both positively correlated with their discharges of drip water (r=0.75, n=11, p<0.01; r=0.63, n=11, p<0.05, respectively), and the deposition rates of the two drip sites exhibit obvious variations, high in rainy seasons while low in dry seasons. The deposition of MP4 and MP5 occur mainly in rainy seasons. The changes of their deposition rates can indicate the dry and humid changes of the outside environment. The annual precipitation increased during 2012-2013. Under the influence of dilution effect, water-rock interaction and different absorptions of plants for elements, the concentration of Mg decreased while the Sr concentration increased. At the same time, the Mg/Ca is negatively correlated with the Sr/Ca. They can respond to the increasing of the precipitation on the interannual time scale.

     

  • loading
  • [1]
    Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice cave, Missouri, USA[J]. Science, 1998, 282: 1871-1874.
    [2]
    Fleitmann D, Burns S J, Mudelsee M. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science, 2003, 300: 1737-1739.
    [3]
    Cheng H, Zhang P Z, Sp?tl C, et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years[J]. Geophysical Research Letters, 2012, 39, 1, DOI: 10. 1029/2011 GL050202.
    [4]
    Li H C, Lee Z H, Wan N J, et al. The δ18O and δ13C records in an aragonite stalagmite from Furong Cave, Chongqing, China: A-2000-year record of monsoonal climate[J]. Journal of Asian Earth Science, 2011, 40: 112-113.
    [5]
    Li T Y, Shen C C, Huang L J, et al. Stalagmite-inferred variability of the Asian summer monsoon during the penultimate glacial–interglacial period[J]. Climate of the Past, 2014, 10: 1211-1219.
    [6]
    Mather B A,Thompson R. Oxgen isotopes from Chinese caves:records not of monsoon rainfall but of circulation regime[J].Quaternary Science Reviews,2012,27:615-624.
    [7]
    李廷勇, 袁道先, 李红春, 等. 重庆新崖洞XY2石笋δ18O记录的57~70 ka BP古气候变化及其对D-O和H事件的反映[J]. 中国科学(D辑), 2007, 37(6): 798-803.
    [8]
    林玉石, 张美良, 覃嘉铭. 洞穴石笋沉积速率研究中值得注意的几个问题[J]. 中国岩溶, 2001, 20(2): 131-135.
    [9]
    Baker A, Asrat A, Fairchild I J, et al. Analysis of the climate signal contained within δ18O and growth rate parameters in two Ethiopian stalagmites[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2975-2988.
    [10]
    Liu Y H, Henderson G M, Hu C Y, et al. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event[J]. Nature Geoscience, 2013, 6: 117-120.
    [11]
    Johnson K R, Hu C, Belshaw N S, et al. Seasonal trace element and stable isotope variations in a Chinese speleothem: The potential for high resolution paleomonsoon reconstruction[J]. Earth Planet Science Letters, 2006, 244: 394-407.
    [12]
    Tremaine D M, Froelich P N. Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite[J]. Geochimica et Cosmochimica Acta, 2013, 121(15): 525-545.
    [13]
    Baldini J U L, Mc Dermott F, Hoffmann D L, et al. Very highfrequency and seasonal cave atmosphere PCO2 variability: Implications for stalagmite growth and oxygen isotope-based paleoclimate records[J]. Earth and Planetary Science Letters, 2008, 272: 118-129.
    [14]
    张美良, 朱晓燕, 李涛, 等. 桂林现代洞穴碳酸盐—石笋的沉积速率及其环境意义[J]. 海洋地质与第四纪地质, 2011, 31(1): 126-134.
    [15]
    林玉石, 张美良, 覃嘉铭. 再论石笋的沉积速率研究[J]. 地质评论, 2005, 51(4): 435-441.
    [16]
    张美良, 朱晓燕, 林玉石, 等. 洞穴滴(流)水的沉积和滴水的溶蚀-侵蚀作用[J]. 中国岩溶, 2007, 26(4): 326-333.
    [17]
    Tan M, Qin X G, Liu D S. Interannual, decadal and centennial scale climatic changes revealed by stalagmite records [J]. Science in China(D), 1998, 28(3): 272-277.
    [18]
    Genty D, Baker A, Vokal B. Intra- and inter-annual growth rate of modern stalagmites[J]. Chemical Geology, 2001, 176: 191-212.
    [19]
    Cai B G, Zhu J, Ban F M, et al. Intra-annual variation of the calcite deposition rate of drip water in Shihua Cave, Beijing, China and its implications for paleoclimatic reconstructions [J], Boreas, 2011, 40(3): 525-535.
    [20]
    刘再华, Dreybrodt W. 方解石沉积速率控制的物理化学机制及其古环境重建意义[J]. 中国岩溶, 2002, 21(4): 252-258.
    [21]
    Treble P, Shelley J M G, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216: 141-153.
    [22]
    王新中, 班凤梅, 潘根兴, 等. 洞穴滴水地球化学的空间和时间变化及其控制因素:以北京石花洞为例[J]. 第四纪研究, 2005, 25(2): 258-264.
    [23]
    Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75: 4140-4156.
    [24]
    衣成城, 李廷勇, 李俊云, 等. 芙蓉洞洞穴离子浓度和元素比值变化特征及其环境意义[J]. 中国岩溶, 2011, 30(2): 99-103.
    [25]
    李俊云, 李廷勇, 王建力, 等. 重庆芙蓉洞土壤带Mg和Sr元素特征及其环境意义[J]. 中国科学: 地球科学, 2013, 43(10): 1667-1676.
    [26]
    李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物δ13C、δ18O 特征及意义[J]. 地质论评, 2008, 54: 712-720.
    [27]
    叶明阳, 李廷勇, 王建力, 等. 芙蓉洞洞穴水Ca2+, Mg2+ 浓度变化对气候事件的响应[J].水土保持学报, 2009, 23(3): 82-86.
    [28]
    朱学稳. 芙蓉洞的次生化学沉积物[J]. 中国岩溶, 1994, 12(4): 357-368.
    [29]
    陈伟海, 朱徳浩, 黄保健. 重庆武隆岩溶地质公园地质遗迹特征, 形成与评价[M]. 北京:地质出版社, 2004, 1-3.
    [30]
    叶明阳, 李廷勇, 王建力, 等. 芙蓉洞次生碳酸盐沉积特征及与降水的关系研究[J]. 沉积学报, 2009, 27(4): 685-690.
    [31]
    Sp?tl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69: 245-248.
    [32]
    Scholz D, Muhlinghaus C, Mangini A. Modelling δ13C and δ18O in the solution layer on stalagmite surfaces[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2592–2602.
    [33]
    李红春, 顾德隆, Lowell D S, 等. 高分辨率洞穴石笋稳定同位素应用之一—京津地区500 a来的气候变化δ18O记录[J]. 中国科学(D辑), 1998, 28(2): 181-186.
    [34]
    刘再华, Chris Groves, 袁道先, 等. 水-岩-气相互作用引起的水化学动态变化研究[J]. 水文地质工程地质. 2003, (4):13-18.
    [35]
    向晓晶, 李廷勇, 王建力, 等. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J]. 中国岩溶, 2011, 30: 193-199.
    [36]
    郑立娜,周厚云,朱照宇,洞穴次生碳酸盐沉积的Mg/Ca与Sr/Ca比值研究进展:兼论洞穴次生沉积物Mg /Ca与Sr /Ca的影响机制,中国岩溶,2010, 29(2): 213-218.
    [37]
    Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28: 449-469.
    [38]
    周厚云, 王悦, 黄柳苑, 等.氧同位素阶段5c-d时期川东北石笋Mg, Sr和Ba记录及其意义[J]. 科学通报, 2011, 56(33): 2791-2796.
    [39]
    Gaseoyne M. Trance element partition coefficients in the calcite-water system and their Paleoclimatic significance in cave studies[J]. Journal of Hydrology, 1983, 61(1): 213-222.
    [40]
    Mucci A. Influence of temperature on the composition of magnesium calcite overgrwths precipitated from sea water[J]. Geochimica et Cosmochimica Acta, 1987, 51: 1977-1984.
    [41]
    Lorens R B. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta, 1981, 45: 553-561.
    [42]
    Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records[J]. Chemical Geology, 2000, 166: 255-269.
    [43]
    Veizer J. Chemical diagenesis of carbonates: Theory and application of trace element technique[J]. In: Arthur M A, ed. Stable Isotopes in Sedimentary Geology. SEPM Short Course, 1983, 10: 1-100.
    [44]
    王云, 魏复盛, 杨国治, 等. 土壤环境元素化学[M]. 北京: 中国环境科学出版社, 1995:371-379.
    [45]
    赵振华. 微量元素地球化学原理[M]. 北京:科学出版社, 1997:183-185.
    [46]
    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984:360-366.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1959) PDF downloads(1943) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return