Citation: | WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3—CO32-—HCO3-—CO2 on CO2 in freshwater carbonate lake:A case study of Baihua lake, Guizhou[J]. CARSOLOGICA SINICA, 2021, 40(4): 572-579. |
[1] |
Regnier P, Friedlingstein P, Ciais P, et al . Anthropogenic perturbation of the carbon fluxes from land to ocean [J]. Nature geoscience 2013, 6:597-607
|
[2] |
Bianucci L, Long W, Khangaonkar T, et al. Sensitivity of the regional ocean acidification and carbonate system in Puget Sound to ocean and freshwater inputs [J]. Elem Sci Anth, 2018, 6(1): 22.
|
[3] |
Egleston E S, Sabine C L, Morel F M M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity [J]. Global Biogeochem. Cycles, 2010, 24: GB1002.
|
[4] |
Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades [J]. Tellus, 1957,9(1):18-27
|
[5] |
Broecker W S, Takahashi T, Simpson H J, et al. Fate of fossil fuel carbon dioxide and the global carbon budget [J]. Science, 1979, 206: 409-418.
|
[6] |
Sundquist E T, Plummer L N, Wigley T M L. Carbon dioxide in the ocean surface: The homogeneous buffer factor [J]. Science, 1979, 204(4398):1203-1205.
|
[7] |
Hauck J, V?ker C. Rising atmospheric CO2 leads to large impact of biology on Southern Ocean CO2 uptake via changes of the Revelle factor [J]. Geophys. Res. Lett., 2015, 42: 1459-1464.
|
[8] |
Howard J R, Skirrow G, House W A, et al. Major ion and carbonate system chemistry of a navigable freshwater canal [J]. Freshwater Biology, 1984, 14(5): 515-532.
|
[9] |
Stets E G. Butman D. McDonald C P. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers [J]. Global Biogeochem. Cycles 2017, 31, 663-677.
|
[10] |
Duvert C, Bossa M. Tyler K J,et al. Groundwater‐derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers [J]. J. Geophy. Res. Biogeo. 2019, 124: 312-327.
|
[11] |
Zhang T, Li J, Pu J, et al. Carbon dioxide exchanges and their controlling factors in Guijiang River, SW China [J]. Journal of Hydrology, 2019, 578: 124073.
|
[12] |
Cole J J, Caraco N F, Kling G W, et al. Carbon dioxide supersaturation in the surface waters of lakes [J]. Science, 1994, 265(5178):1568-1570.
|
[13] |
Tranvik L, Downing J A, Cotner J B, et al., Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnol. Oceanogr. 2009, 54 (6, part 2):2298-2314.
|
[14] |
Marce R, Obrador B, Morgui J-A, et al. Carbonate weathering as a driver of CO2 supersaturation in lakes[J]. Nature geoscience, 2015, 8:107-111.
|
[15] |
McDonald C P, Stets E G, Striegl R G, et al. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States [J]. Global Biogeochem. Cycles, 2013, 27:285–295, doi:10.1002/gbc.20032.
|
[16] |
Weyhenmeyer G A, Kosten S, Wallin S K, et al. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs[J]. Nautre geoscience, 2015, 8:933-931.
|
[17] |
Müller B, Meyer J S, G?chter R. Alkalinity regulation in calcium carbonate-buffered lakes[J]. Limnol. Oceanogr. 2016, 61:341-352.
|
[18] |
Raymond P A, Cole J J. Increase in the export of alkalinity from north America’s largest river[J], Science, 2003, 301: 88-91,DOI: 10.1126/science.1083788.
|
[19] |
章程,蒋忠诚,Chris G,等.岩溶IGCP国际合作30年与岩溶关键带研究展望[J].中国岩溶,2019,38(03):301-306.
|
[20] |
吴泽燕,罗为群,蒋忠诚,等.土壤改良对土壤水水化学及碳酸盐岩溶蚀的CO2净消耗量的影响[J].中国岩溶,2019,(1):60-69.
|
[21] |
Huang X, Hu J, Li C, et al. Heavy-metal pollution and potential ecological risk assessment of sediments from Baihua Lake, Guizhou, P.R. China [J]. International Journal of Environmental Health Research, 2009, 19(6): 405-419.
|
[22] |
黎文,吴丰昌,王静,等. 河流-湖泊系统中溶解有机质的示踪及迁移[J].环境科学研究,2012,25(2):133-139.
|
[23] |
李小峰,李秋华,秦好丽,等. 百花湖消落带常见植物氮磷钾营养元素含量分布特征研究[J].环境科学学报,2013,33(4):1089-1097.
|
[24] |
沈威,胡继伟,谢伟芳,等.百花湖水体氮的空间分布研究[J].中国岩溶,2012,31(1):74-81.
|
[25] |
张维,红枫湖、百花湖环境特征及富营养化[M]. 贵阳,贵州科技出版社,1999.
|
[26] |
Tao F X. 2017. Air–water CO2 flux in an algae bloom year for Lake Hongfeng, Southwest China: implications for the carbon cycle of global inland waters[J]. Acta Geochimica, 2017,36: 658-666.
|
[27] |
周长松,邹胜章,朱丹尼,等.岩溶地下水样品Ca2+、HCO〖_3^-〗野外测试值与实验室测试值对比研究[J].中国岩溶,2017,36(5):684-690.
|
[28] |
Jonsson A, Karlsson J, Jansson M. Sources of Carbon Dioxide Supersaturation in Clearwater and Humic Lakes in Northern Swede[J].Ecosystems, 2003,6:224-235,DOI: 10.1007/s10021-002-0200-y.
|
[29] |
Wallin M, Buffam I, ?quist M, et al. Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: concentrations and downstream fluxes [J]. J. Geophy. Res., 2010, 115: G02014.
|
[30] |
Butler P J, Woakes A J. Control of heart rate by carotid body chemoreceptors during diving in tufted ducks [J]. J Appl Physiol Respir Environ Exerc Physiol. 1982, 53 (6):1405-1410.
|
[31] |
吕迎春,刘丛强,王仕禄,等. 贵州喀斯特水库红枫湖、百花湖p(CO2)季节变化研究[J]. 环境科学,2007(12):2674-2681.
|
[32] |
章程.岩溶区河流水化学昼夜变化与生物地球化学过程[J].中国岩溶,2015,34(1):1-8.
|
[33] |
李瑞,于奭,孙平安,等.贵州茂兰板寨水域水生植物δ13C特征及光合作用固定HCO〖_3^-〗碳量估算[J].中国岩溶,2015,34(1):9-8.
|
[34] |
Zeebe RE. Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M].Elsevier Oceanography Series 65,Amsterdam, 2001,(Paperback) ISBN: 0444509461
|
[35] |
张陶,李建鸿,蒲俊兵,等.小球藻对岩溶水体Ca2+、HCO〖_3^-〗利用效率实验研究[J].中国岩溶,2018,37(1):81-90.
|
[36] |
Talling J F. pH, the CO2 System and Freshwater Science[J]. Freshwater Reviews, 2010, 3(2):133-146.
|