• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 33 Issue 3
Sep.  2014
Turn off MathJax
Article Contents
JIA Long, MENG Yan, GUAN Zhen-de. Evolution and numerical simulation of a karst soil cave[J]. CARSOLOGICA SINICA, 2014, 33(3): 294-298.
Citation: JIA Long, MENG Yan, GUAN Zhen-de. Evolution and numerical simulation of a karst soil cave[J]. CARSOLOGICA SINICA, 2014, 33(3): 294-298.

Evolution and numerical simulation of a karst soil cave

  • Publish Date: 2014-09-25
  • Soil caves in karst areasarea concealed and adverse geological phenomena. The evolution of a soil cave can cause uneven displacement and stress redistribution on the overlying soil layer, conversely changes in displacement and stress can be used to study soil cave evolution using three-dimensional finite-difference software FLAC3D. The vertical displacement field of the soil layer shows that, the maximum vertical displacement taking place on the arch roof of the soil cave may cause tensile failure of the arch roof. Based on the level of soil layer displacement on the arch roof, an "equal settlement plane" can be drawn to determine the depth of the soil cave. The shear stress field of the soil layer indicates that, the maximum shear stress in the arch toes can cause arch toe shear failure, and the "low shear stress area" can be used to determine the impact of the arching effect on the overlying soil layer. Through analysis of the plastic zone of the soil layer, it is concluded that, in rigid clay areas, soil caves with barrel bottle-shaped pit collapse were mainly caused by arch roof collapse and tensile failure; while in areas of loose soil, caves with taper or plate-shaped pit collapse resulted from shear failure of the arch toe. The low shear stress area, equal settlement plane and plastic zone can be adopted to evaluate the stability of soil caves and the limits on hole size in the overlying layer. Evolution and numerical simulation of karst soil caves in this study provide important theoretical and engineering results for monitoring and evaluation of early stage karst collapse.

     

  • loading
  • [1]
    康彦仁.岩溶地面塌陷的形成条件[J]中国岩溶.1987,6(4):9-18.
    [2]
    陈国亮,陈裕昌,谭鸿增,等. 岩溶地面塌陷机制、预测及整治研究[J] 地质灾害与防治. 1990, 1(3):39-48.
    [3]
    雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J]中国地质灾害与防治学报,1998,9( 3):11-16.
    [4]
    蒋小珍,雷明堂,管振德.单层土体结构岩溶土洞的形成机理[J]中国岩溶, 2012,31(4): 426-432.
    [5]
    戴建玲,雷明堂, 蒋小珍.线性工程岩溶塌陷危险性评价研究[J]。中国岩溶,2012,31(3):296-302.
    [6]
    黄健民,吕镁娜,郭宇,等.广州金沙洲岩溶地面塌陷地质灾害成因分析研究[J],中国岩溶,2013,32(2):167-174.
    [7]
    万志清,秦四清,李志刚,等.土洞形成的机理及起始条件[J]岩石力学与工程学报, 2003,11(8):1377-1382.
    [8]
    王滨,贺可强,高宗军.岩溶塌陷发育的时空阶段性分析[J]水文地质工程地质,2001,28(5):25-27.
    [9]
    程星,彭世寿.岩溶区地下水位下降致塌的数值模拟研究[J]地球与环境,2005,31(S1): 119-123.
    [10]
    蒋小珍.岩溶塌陷中水的触发作用[J] 中国地质灾害与防治学报,1998,9(3):42-47.
    [11]
    朱衍峰,周晓军,邓彬. 地铁施工中地下建筑物对地表沉降的控制标准[J] 四川建筑,2008,(01):86-87.
    [12]
    Terzaghi K. Theoretical soil mechanics[M] New York:Wiley,1943.
    [13]
    Handy R L.The arch in soil acrhing[J] Journal of Geotechnical Engineerang,1985,111(3):302-318.
    [14]
    Kèzdi A. Lateral Earth Pressure. Foundation Engineering Handbook, Eds. Winterkorn H F & Fang, H Y, Van Nostrand Reinhold Company, New York, 1975:197-220.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1978) PDF downloads(1598) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return