• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 4
Dec.  2013
Turn off MathJax
Article Contents
LUO Xiaojie. Features of the shallow karst development and control of karst collapse in Wuhan[J]. CARSOLOGICA SINICA, 2013, 32(4): 419-432.
Citation: LUO Xiaojie. Features of the shallow karst development and control of karst collapse in Wuhan[J]. CARSOLOGICA SINICA, 2013, 32(4): 419-432.

Features of the shallow karst development and control of karst collapse in Wuhan

  • Received Date: 2013-10-12
  • Publish Date: 2013-12-25
  • In order to reveal the shallow karst development laws and provide the basis for prevention and control measures of karst collapse disaster, the development characteristics of covered karst in Wuhan are studied by the means of comprehensive analysis and mathematical statistics method. There are 6 independent carbonate rock belts with the trend of NWW to SEE. According to the characteristics of the overlying carbonate rock covers, 5 karst geologic structure types are divided. The shallow karst types in Wuhan are mainly solution fissure, grike, grooves and sink as well as small caves. The cave encountering rate of borehole (ECR) is 46.0 %-50.1 %; the linear karst rate of borehole (LKR) is 5.93 %-6.00 %. In shallow karst belt, the height in 1/3 karst caves is less than 0.6 m, a half less than 1.0 m, 90 percent less than 3.0 m. The depth from bed rock surface to cave roof in 1/3 karst caves is less than 2.5 m, a half less than 4.5 m, 90 percent less than 12.5 m. The fillings of karst cave are mainly clay with limestone detritus and block. And 70.8 % of karst caves is fully filled, about 20 % is unfilled, less than 8 % is half filled. The average depth below bedrock surface of fully filled caves is 5.13 m, half filled cave 5.71 m, and unfilled 7.69 m. From the fully filled to half filled or unfilled caves, the depth below bedrock surface of karst cave roof gradually increases, reflecting the caves are filled downward from the top and the fillings are from overlying cover layers. The shallow kart in Wuhan belongs to the “vertical seepage karst zone” and is the result of vertical seepage action. On vertical section, the shallow carbonate rock can be divided into strongly developed karst upper zone and weakly developed lower karst zone. In plane view, 3 risky areas of collapse can be divided, namely the high, the middle and the low risk area. The prevention and control principles of karst collapse disaster are different in different risk areas. High risk area is the focus of karst collapse disaster prevention, and the basic principle is to prevent the overlying sand erosion. The prevention and control principle of the middle risk areas is to protect the integrity of the old clay or red layer. In low risk area, we should pay attention to the soil caves located in the interface of old clay and carbonate rock far from the city. The governing works should be based on the karst geologic structure and it should be guided by the principles in make relevant governing measures. Moreover, weak karst zone should be reasonably selected and utilized in engineering construction.

     

  • loading
  • [1]
    杨真三. 武汉地区岩溶对工程建设的影响[J]. 土工基础,1990,4(2):15-17.
    [2]
    吴永华,谢春波,朱洵. 陆家街地区岩溶塌陷形成机制及预测评价[J]. 中国地质灾害与防治学报,1994,5(增刊):118-123.
    [3]
    郑先昌,卫中营. 武汉市岩溶地面塌陷诱发因素分析[J]. 城市勘测,2004(1):15-19.
    [4]
    范士凯. 武汉(湖北)地区岩溶地面塌陷[J]. 资源环境与工程,2006,20(增刊):608-616.
    [5]
    侯国伦. 武汉岩溶地区工程地质勘察与评价实例[J]. 资源环境与工程,2010,24(4):390-393.
    [6]
    于政伟,冉俊,张友安. 浅析武汉地区岩溶地陷及岩土工程勘察中的预防措施[J]. 科技创新导报,2010(31):114.
    [7]
    罗小杰,罗世杰. 武汉市汉南区长江干堤内地面塌陷成因分析与处置措施探讨[J]. 资源环境与工程,2009,23(专刊):75-79.
    [8]
    罗小杰. 试论武汉地区构造演化与岩溶发育史[J]. 中国岩溶,2013,32(2):195-202.
    [9]
    官善友,蒙核量,周淼. 武汉市岩溶分布与发育规律[J]. 城市勘测,2008(4):145-149.
    [10]
    郭礼士,张琳. 武汉市岩溶发育特点及勘察时应注意的几个问题[J]. 中国电子商务,2011(8):105.
    [11]
    张智,刘润泽. 武汉地铁岩溶问题层析成像(CT)技术探测研究[C]//中国地球物理学会.中国地球物理(2009). 合肥:中国科学技术大学出版社,2009:282-283.
    [12]
    罗小杰,马贵生. 长江中下游堤防工程地质研究(第1版)[M]. 武汉:中国地质大学出版社,2010.
    [13]
    贾淑霞,马霄汉. 武汉市区岩溶地面塌陷成因机理与预测研究[J]. 中国地质灾害与防治学报,1994,5(增刊):103-108.
    [14]
    李智毅,叶俊林. 武汉市陆家街地面塌陷的形成机制[J]. 地球科学——中国地质大学学报,1989,14(2):207-211.
    [15]
    张琨,刘建民,邬欢,等. 城市桥梁桩基穿越溶洞预注浆施工技术[J]. 施工技术,2011,40(1):77-79.
    [16]
    湖北省地质矿产局. 湖北省区域地质志[M]. 北京:地质出版社,1990. 4.
    [17]
    湖北省地质矿产局. 1∶20万黄陂幅区域地质调查报告[R]. 1975.
    [18]
    湖北省地质矿产局. 1∶20万武汉幅区域地质调查报告[R]. 1975.
    [19]
    湖北省区域地质矿产调查所. 武汉市地质图说明书(1∶50000)[R]. 1985.
    [20]
    湖北省地质矿产局. 武汉市基岩地质图说明书(1∶50000)[R]. 1985.
    [21]
    湖北省地质矿产局. 武汉市地质图说明书(1∶50000)[R]. 1990.
    [22]
    湖北省地质矿产局. 武汉市基岩地质图说明书(1∶50000)[R]. 1990.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2808) PDF downloads(2084) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return