• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 4
Dec.  2013
Turn off MathJax
Article Contents
ZHANG Liankai,, YANG Hui. Transport process of arsenic in karst subterranean stream and analysis on the influence factors: A case in Lihu subterranean stream of Nandan county, Guangxi[J]. CARSOLOGICA SINICA, 2013, 32(4): 377-383.
Citation: ZHANG Liankai,, YANG Hui. Transport process of arsenic in karst subterranean stream and analysis on the influence factors: A case in Lihu subterranean stream of Nandan county, Guangxi[J]. CARSOLOGICA SINICA, 2013, 32(4): 377-383.

Transport process of arsenic in karst subterranean stream and analysis on the influence factors: A case in Lihu subterranean stream of Nandan county, Guangxi

  • Received Date: 2013-09-15
  • Publish Date: 2013-12-25
  • The arsenic pollutants generated by the arsenic industries and mining enterprises in karst area flow into subterranean streams and contaminate groundwater easily because of the unique hydrogeological characteristics of karst area, which is a serious threat to the water ecologic security and local residents’ health. In order to elucidate the geochemistry reaction mechanisms of arsenic in karst subterranean streams, the Lihu subterranean stream in Nandan county, Guangxi Province, Southwest China, is selected for the study. The main outcropped lithology in the Lihu subterranean stream catchment is Carboniferous Triassic limestone and the karstification rate is 31.67%. Arsenic species, sediment physical chemical properties and hydro-chemical characteristics of the water are analyzed by inductively coupled plasma mass spectrometer (ICP-MS), X-ray fluorescence spectrometer (XRF) and plasma spectrometer (ICP) respectively. The results show that arsenic concentration in the Lihu subterranean stream is high and it is closely related to human activities. The content of As (III), higher than As (V), occupies 53 % of the total inorganic arsenic in the Lihu subterranean stream due to the low redox environment, which increase the arsenic ecological risk in this region. The contents of total arsenic and As (III) as well as As (V) are attenuated by 51 %, 36 %, 59 % respectively in the underground river. Correlation coefficient analysis calculated with SPSS indicates that sediment Fe, sediment Ca, sediment organic matter, sediment Mn and water Ca2+ are the positive factors that promoting the deposition of arsenic from water. While water Cl-, SO42- and HCO3-, negatively correlated with arsenic in the water, do not facilitate to absorb arsenic. Compared with other water bodies, such as Quaternary groundwater, surface rivers and lakes waters, Ca and HCO3-, turn out to be the important factors for mobilization and transformation of arsenic due to the high calcium and bicarbonate content in karst water. Therefore, karst hydrogeological characteristics should be considered during arsenic contamination treatment in karst groundwater.

     

  • loading
  • [1]
    肖细元,陈同斌,廖晓勇,等. 中国主要含砷矿产资源的区域分布与砷污染问题[J]. 地理研究, 2008, (01): 201-212.
    [2]
    魏梁鸿,周文琴. 砷矿资源开发与环境治理[J]. 湖南地质, 1992, 11(3): 259-262.
    [3]
    Segura R,Arancibia V,Zúniga M C,et al. Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile[J]. Journal of Geochemical Exploration, 2006, 91(1): 71-80.
    [4]
    Savage K S,Tingle T N,O’Day P A,et al. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California[J]. Applied Geochemistry, 2000, 15(8): 1219-1244.
    [5]
    翟丽梅,陈同斌,廖晓勇,等. 广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J]. 环境科学学报, 2008, 28(6):1206-1211.
    [6]
    李玲,张国平,刘虹,等. 广西大厂矿区土壤-植物系统中 Sb, As 的迁移转化特征[J]. 环境科学学报, 2010, 11(30): 2305-2313.
    [7]
    李先琨,苏宗明. 桂西南不同地层土壤的元素地球化学特征[J]. 广西科学, 2001, 8(4): 301-307.
    [8]
    蹇丽,李慧君,吴琳,等. 广西高砷区采矿业污染河流治理探讨[J]. 环境科学与管理, 2012, 37(4): 108-111.
    [9]
    唐伟,裴建国,殷建军,等. 桂林毛村岩溶地下河二十多来的水质演化趋势研究[J]. 中国岩溶, 2010, (3): 331-336.
    [10]
    王瑞江,姚长宏,蒋忠诚,等. 贵州六盘水石漠化的特点, 成因与防治[J]. 中国岩溶, 2001, 20(3): 211-216.
    [11]
    Smedley P L,Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.
    [12]
    Ahmed K M,Bhattacharya P,Hasan M A,et al. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview[J]. Applied Geochemistry, 2004, 19(2): 181-200.
    [13]
    郭华明,王焰新,李永敏. 山阴水砷中毒区地下水砷的富集因素分析[J]. 环境科学, 2003, 24(4): 60-67.
    [14]
    袁道先. 中国岩溶动力系统[M].地质出版社, 2002.
    [15]
    郭芳,姜光辉,裴建国,等. 广西主要地下河水质评价及其变化趋势[J]. 中国岩溶, 2002, (03): 44-50,54.
    [16]
    李大通,罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2): 147-150.
    [17]
    马振杰. 城市生活废弃物对岩溶地下河的污染研究[D]. 西南大学, 2011.
    [18]
    蹇丽,黄泽春,刘永轩,等. 采矿业污染河流底泥及河漫滩沉积物的粒径组成与砷形态分布特征 [J]. 环境科学学报, 2010, 30(9): 1862-1870.
    [19]
    刘德福. 氧化还原电位、pH值与水体自净能力的关系[J]. 上海环境科学, 1985, (2): 22-23.
    [20]
    Huaming Guo,Doris Stüben,Zsolt Berner,et al. Characteristics of arsenic adsorption from aqueous solution: Effect of arsenic species and natural adsorbents[J]. Applied Geochemistry, 2009, 24(4): 657-663.
    [21]
    Bruce A Manning,Sabine Goldberg. Arsenic (III) and arsenic (V) adsorption on three California soils[J]. Soil Science, 1997, 162(12): 886-895.
    [22]
    马锡年,李全生,沈万仁,等. 渤海湾表层沉积物中的砷与铁、铝、锰等元素的关系[J]. 海洋与湖沼, 1984, (05): 448-456.
    [23]
    Sullivan K A ,Aller R C. Diagenetic cycling of arsenic in Amazon shelf sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1465-1477.
    [24]
    Goh K H,Lim T T. Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment[J]. Applied Geochemistry, 2005, 20(2): 229-239.
    [25]
    魏显有,王秀敏. 土壤中砷的吸附行为及其形态分布研究[J]. 河北农业大学学报, 1999, 22(3): 28-30.
    [26]
    Cui C G ,Liu Z H . Chemical speciation and distribution of arsenic in water, suspended solids and sediment of Xiangjiang River, China[J]. The Science of the Total Environment, 1988, 77(1): 69-82.
    [27]
    陈静生,洪松,邓宝山,等. 中国东部花岗岩, 玄武岩及石灰岩上土壤微量元素含量的纬向分异[J]. 土壤与环境, 1999, 8(3): 161-167.
    [28]
    曹建华,袁道先,裴建国,等.受地质条件制约的中国西南岩溶生态系统[M].地质出版社, 2005.
    [29]
    Jekel M R. Arsenic in the Environment, Part I: Cycling and Characterization[J]. In: J.O Nriagu (Ed.), Arsenic in the environment: part 1. Cycling and characterization[M]. John Wiley & Sons: 1994:119-131.
    [30]
    Bhumbla D K, Keefer R F. Arsenic mobilization and bioavailability in soils[J]. In: J.O Nriagu (Ed.), Arsenic in the environment: part 1. Cycling and characterization[M].John Wiley & Sons: New York,1994: 51-82.
    [31]
    Hossain M Anawar,Junji Akai,Hiroshi Sakugawa. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6): 753-762.
    [32]
    Smith E,Naidu R,Alston A M. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption[J]. Journal of Environmental Quality, 2002, 31(2): 557-563.
    [33]
    Redman A D,Macalady D L,Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite[J]. Environmental Science & Technology, 2002, 36(13): 2889-2896.
    [34]
    Markus Grafe,Matthew J Eick,Paul R Grossl,et al. Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon[J]. Journal of Environmental Quality, 2002, 31(4): 1115-1123.
    [35]
    Dejene A Tessema,Walter Kosmus. Influence of humic and low molecular weight polycarboxylic acids on the release of arsenic from soils[J]. Journal of trace and microprobe techniques, 2001, 19(2): 267-278.
    [36]
    Lin H T ,Wang M C,Li G C. Complexation of arsenate with humic substance in water extract of compost[J]. Chemosphere, 2004, 56(11): 1105-1112.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2254) PDF downloads(1654) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return