• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 2
Jun.  2013
Turn off MathJax
Article Contents
LI Xue dong, YANG Guang bin, LI Man, FAN Wen juan, CHEN Tao. RS classification information extraction of landuse in karst area by means of object oriented approach: A case in Bijie, Guizhou[J]. CARSOLOGICA SINICA, 2013, 32(2): 231-237. doi: 10.3969/j.issn.1001-4810.2013.02.016
Citation: LI Xue dong, YANG Guang bin, LI Man, FAN Wen juan, CHEN Tao. RS classification information extraction of landuse in karst area by means of object oriented approach: A case in Bijie, Guizhou[J]. CARSOLOGICA SINICA, 2013, 32(2): 231-237. doi: 10.3969/j.issn.1001-4810.2013.02.016

RS classification information extraction of landuse in karst area by means of object oriented approach: A case in Bijie, Guizhou

doi: 10.3969/j.issn.1001-4810.2013.02.016
  • Received Date: 2012-11-20
  • Publish Date: 2013-06-25
  • Although traditional pixel-oriented classification can get good result in the extraction of information from the remote sensing image with marked spectral difference, the “salt and pepper phenomenon” cannot be avoided and the information of texture and shape cannot be fully applied, which resulting in large amount of information loss. In this paper, in order to improve the accuracy of remote sensing information extraction, the land-used information in Bijie, Guizhou, is extracted automatically by way of object-oriented approach. Firstly, the regional images of Landsat-5 TM is segmented multiscalely to create the image object layer. Then, remote sensing interpretation is done for karst area in light of knowledge decision tree classification and Suppot Vector Machine (SVM) classification techniques. The results show that the object-oriented classification techniques can accurately and efficiently extract land-use information in karst area, and can avoid the “salt and pepper phenomenon” meanwhile. Data verification by sampling in the field proves that the first classification accuracy of the first level is 91.7 % and the second level classification accuracy is 89.4 %, indicating the object oriented approach has a good application effect in Bijie, Guizhou Province.

     

  • loading
  • [1]
    李素英,徐瑞涛,贾伟洁.基于面向对象的遥感影像土地利用地物提取[J].国土资源信息化,2011(6):12-17.
    [2]
    李敏,崔世勇,李成名,等.面向对象的高分辨率遥感影像信息提取——以耕地为例[J].遥感应用,2008(6):63-66.
    [3]
    张雨霁,李海涛,顾海燕.基于决策树的面向对象变化信息自动提取研究[J].遥感应用,2011(2):91-97.
    [4]
    André Stumpf,Norman Kerle. Object-oriented mapping of landslides using Random Forests[J]. Remote Sensing of Environment,2011(115):2564-2577.
    [5]
    苏理宏,李小文,黄裕霞.遥感尺度问题研究进展[J].地球科学进展,2011,6(4):544-548.
    [6]
    汤传勇,卢远.利用面向对象的分类方法提取水稻种植面积[J].遥感信息,2010(1):53-56.
    [7]
    于欢,张树清,孔博,等.面向对象遥感影像分类的最优尺度选择研究[J].中国图形图像学,2010(2):352-360.
    [8]
    苏晓玉,甘甫平,万里飞,等.辅以波谱分析的高分辨率影像面向对象分类研究[J].图学学报,2012,3(1):73-79.
    [9]
    祖琪,袁希平,莫源富,等. 基于面向对象分类方法在SPOT影像中的地物信息提取[J].中国岩溶,2011,30(2):227-232.
    [10]
    Goncalves H, Corte-Real L,Goncalves J A. Automatic Image Registration Through Image Segmentation and SIFT[J]. Geoscience and Remote Sensing,2011,6(7):2589-2599.
    [11]
    李爽,丁圣彦,许叔明.遥感影像分类方法比较研究[J],河南大学学报,2002,6(32):70-73.
    [12]
    陈秋晓,骆剑承,周成虎,等.基于多特征的遥感影像分类方法[J].遥感学报,2004,3:239-245.
    [13]
    钱巧静,谢瑞,张磊,等.面向对象的土地覆盖信息提取方法研究[J].遥感技术与应用,2005,6(3):338-342.
    [14]
    〖JP2〗陈云浩,冯通,史培军,等.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报(信息科学版),2006,4(4): 316-320.
    [15]
    杨存建,周成虎.基于知识的遥感图像分类方法的探讨[J].地理学与国土研究,2001,2(1):72-77.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4228) PDF downloads(3232) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return