• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 32 Issue 2
Jun.  2013
Turn off MathJax
Article Contents
PU Jun bing. Dissolved inorganic carbon and stable carbon isotope in karst subterranean streams in Chongqing, China[J]. CARSOLOGICA SINICA, 2013, 32(2): 123-132. doi: 10.3969/j.issn.1001-4810.2013.02.001
Citation: PU Jun bing. Dissolved inorganic carbon and stable carbon isotope in karst subterranean streams in Chongqing, China[J]. CARSOLOGICA SINICA, 2013, 32(2): 123-132. doi: 10.3969/j.issn.1001-4810.2013.02.001

Dissolved inorganic carbon and stable carbon isotope in karst subterranean streams in Chongqing, China

doi: 10.3969/j.issn.1001-4810.2013.02.001
  • Received Date: 2013-02-08
  • Publish Date: 2013-06-25
  • Stable carbon isotope is a useful and powerful tool for tracing the origin and transformation of carbon in karst dynamics system. For obtaining the characteristics of hydrochemistry and isotope, groundwater samples in wet and dry seasons from 63 karst subterranean streams in Chongqing are collected in this study. The results show that the HCO3- is the dominant species of the DIC in ground waters and the concentration of HCO3- is lower in wet season than dry season due to dilution. δ13C-DIC (V-PDB) in karst subterranean streams in Chongqing varies from -15.34 ‰~-5.89 ‰ in dry season and from -17.40 ‰~-4.23 ‰ in wet season. The widely variations of δ13C in wet season show the complex origins of carbon in karst subterranean streams in wet season. Based on the δ13C isotope mass balance equation, the amount of DIC that comes from the carbonate rock dissolution is calculated in this study. The calculated results show that 45.1 %~79.7 % of the DIC in the dry season and 34.6 %~82.1 % in the wet season is from dissolution of carbonate rocks in karst groundwater. The calculated results also shows that the DIC and the corresponding δ13C proportion originated from the carbonate rock dissolution is not necessarily 50 % according to the molar ration of karst chemical reaction equation, but has a changes range at some extend. As a result, this study suggests that we should deduct first the DIC originated from the carbonate rock dissolution using the δ13C when we calculate the carbon sink of karst processes, and then calculate further the karst carbon sink.

     

  • loading
  • [1]
    袁丙华著.中国西南岩溶石山地区地下水资源及生态环境地质研究[M].成都:电子科技大学出版,2007.
    [2]
    蒲俊兵,袁道先,蒋勇军,等.重庆市地下河的空间分布及水资源[J]. 水文地质工程地质,2009,36(2):34-39.
    [3]
    蒲俊兵,袁道先,蒋勇军,等.重庆岩溶地下河水文地球化学特征及环境意义[J].水科学进展,2010,21(5):628-636.
    [4]
    杨平恒, 袁道先, 袁文昊, 等. 以PCA揭示降雨期间岩溶地下水文地球化学的形成[J]. 科学通报,2010,55 (9):788-797.
    [5]
    Parkhurst D L, Appelo C A J. User’s guide to PHREEQC (Version 2)-a computer program for speciation, batchreaction, one dimensional transport, and inverse geochemical calculations[R]. US Geol. Survey, Water. Res. Inv. 99 4259, 1999
    [6]
    Clark I, Fritz P. Environmental isotopes in hydrogeology[M].New York:Lewis Publishers,1997:352.
    [7]
    刘再华,Dreybrodt W,王海静. 一种由全球水循环产生的可能重要的CO2 汇[J]. 科学通报, 2007,52(20):2418-2422.
    [8]
    Cane G, and Clark I. Tracing ground water recharge in an agricultural watershed with isotopes[J]. Ground Water,1999,37(1): 133-139.
    [9]
    Li S, Liu C, Tao F, et al.Carbon Biogeochemistry of Ground Water, Guiyang, Southwest China[J]. Ground Water,2005,43(4): 494-499.
    [10]
    Li X, Liu C, Harue M, et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry,2010,25:1924-1936.
    [11]
    Perrin A S, Probst A, Probst J L. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales[J]. Geochimica et Cosmochimica Acta,2008,72:3105-3123.
    [12]
    Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13C-DIC , and δ34 S-SO4 in rivers of the Canadian Cordillera [J]. Geochimica et Cosmochimica Acta,2005,69:5441-5458.
    [13]
    Larssen T, Carmichael G R. Acid rain and acidification in China: the importance of base cation deposition[J]. Environmental Pollution,2000,110(1): 89-102.
    [14]
    汤洁, 徐晓斌, 巴金, 等.1992—2006年中国降水酸度的变化趋势[J].科学通报, 2010, 55(8):705-712.
    [15]
    Solomon S, Qin D, Manning M, et al. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge University Press, NY,USA,2007,296.
    [16]
    Friedli H, Lotscher H, Oeschger H, et al. Icecore record of the 12 C/ 13 C ratio of atmospheric CO2 in the past two centuries[J]. Nature,1986,324:237-238.
    [17]
    Zhang J, Quay P, Wilbur D. Carbon isotope fractionation during gas-wate exchange and dissolution of CO2 [J]. Geochimica et Cosmochimica Acta,1995,59(1): 107-114.
    [18]
    巴金,汤洁,王淑凤,等.重庆地区近 10 年酸雨时空分布和季节变化特征分析[J].气象,2008,39(4):81-88.
    [19]
    Stumm W,Morgan J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters. 2 nd edition [M]. Toronto: Wiley Interscience,1996:148-251.
    [20]
    Vogel J. Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer J R, Hall A E, and Farquhar (Eds).Stable isotopes and plant carbon-water relations[M]. San Diego:Academic Press, 1993:29-38.
    [21]
    Palmer S, Hope D, Billett M, et al. Sources of organic and inorganic carbon in a headwater stream:Evidences from carbon isotopic studies [J]. Biogechemistry,2001,52 (3):321-338.
    [22]
    Cerling T, Solomon D, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta,1991,55:3403-3405.
    [23]
    Amiotte-Suchet P, Aubert D, Probst J, et al. δ13C pattern of dissolved inorganic carbon in a small granitic catchment: The strengbach case study (Vosges mountains, France) [J].Chemical Geology,1999,159:129-145.
    [24]
    Mook W, Bommerson J, Staverman W. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J].Earth and Planetary Science Letters,1974,22:169-176.
    [25]
    Deines P, Langmuir D, Harmon R. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta, 1974, 38:1147-1164.
    [26]
    Appelo C A J, Postma D. Geochemistry, Groundwater and Pollution, 2nd Edition [M].Balkema, Rotterdam, The Netherlands,2005.
    [27]
    Mook W G, de Vries J J, Environmental isotopes in the hydrological cycle-principles and applications[R]. Technical Documents in Hydrology No. 39. UNESCO/IAEA, Paris. 2000.
    [28]
    Toran L, Roman E. CO2 outgassing in a combined fracture and conduit karst aquifer near Lititz Spring, Pennsylvania[C]// Harmon R S, and Wicks C, eds., Perspectives on karst geomorphology, hydrology, and geochemistry—A tribute volume to Derek C. Ford and William B. White. Boulder, Colorado, USA: Geological Society of America Special Paper 404, 2006:275-282.
    [29]
    Peyraube N, Lastennet R, Denis A. Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2 —SIc relationship[J].Journal of Hydrology,2012,430-431:13-24.
    [30]
    Assayag N, Bickle M, Kampman N, et al.Carbon isotopic constraints on CO2 degassing in cold-water Geysers, Green River, Utah[J]. Energy Procedia,2009,1:2361-2366.
    [31]
    Doctor D H, Kendall C, Sebestyen S D. Carbon isotope f ractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream[J].Hydrological Processes,2008,22:2410-2423.
    [32]
    Chapelle F, Knobel L. Stable carbon isotopes of HCO3- in the aquia aquifer, Maryland: evidence for an isotopically heavy source of CO2 [J]. Ground Water,1985,23:592-599.
    [33]
    Fang J, Barcelona M, Krishnamurthy R, et al. Stable carbon isotope biogeochemistry of a shallow sand aquifer contaminated with fuel hydrocarbons[J]. Applied Geochemistry,2000,15:157-169.
    [34]
    Wu Y, Zhang J, Liu S, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science,2007,71:13-25.
    [35]
    李廷勇,李红春,李俊云,等.重庆芙蓉洞洞穴沉积物δ13C,δ18 O特征及意义[J]. 地质论评,2008,54(5):712-720.
    [36]
    汤新燕,黄俊华,王友贞,等.重庆凉风垭剖面二叠-三叠系界线层碳同位素变化特征[J].地质科技情报,2007,26(4):42-46.
    [37]
    王翱宇,蒲俊兵,沈立成,等. 重庆雪玉洞CO2 浓度变化的自然与人为因素探讨[J]. 热带地理,2010,30(3):272-277.
    [38]
    王恒纯主编.同位素水文地质学[M].北京:地质出版社,1991:191.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3172) PDF downloads(2368) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return