• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 31 Issue 2
Jun.  2012
Turn off MathJax
Article Contents
CAO Min, JIANG Yong-jun, PU Jun-bing, ZHANG Xing-bo, QIU Shu-lan, YANG Ping-heng, WANG Zhi-jun, LI Huan-huan. Variations in DIC and δ13C DIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing[J]. CARSOLOGICA SINICA, 2012, 31(2): 145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006
Citation: CAO Min, JIANG Yong-jun, PU Jun-bing, ZHANG Xing-bo, QIU Shu-lan, YANG Ping-heng, WANG Zhi-jun, LI Huan-huan. Variations in DIC and δ13C DIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing[J]. CARSOLOGICA SINICA, 2012, 31(2): 145-153. doi: 10.3969/j.issn.1001-4810.2012.02.006

Variations in DIC and δ13C DIC of the karst groundwater and in carbon sink of Laolongdong subterranean stream basin at Nanshan, Chongqing

doi: 10.3969/j.issn.1001-4810.2012.02.006
  • Received Date: 2012-01-02
  • Publish Date: 2012-06-25
  • Study on chemical weathering of carbonate rock is of great significance for further understanding of the global carbon cycle. In this study, groundwater samples from the Laolongdong subterranean stream at Nanshan, Chongqing are investigated to analyze the variations in DIC and its origins. The carbon sink in the entire basin is calculated based on DIC concentrations and stream discharge rate, and the influence of related natural and human factors on the carbon sink is presented, too. The groundwater shows a Ca-HCO3-SO4 hydrochemistry type, indicating the dominant control of the dissolution of carbonate rock both by carbon and sulfuric acids in the basin. The concentration of DIC ranges from 3.1 mmol/L to 6.3 mmol/L and is generally low during rainy season due to the dilution by large amount of rainwater. The δ13C DIC varies from -3.8‰ to -13.1‰ and is 2‰ higher in the summer than the winter. According to the DIC concentration and stream discharge, the carbon sink in the Laolongdong subterranean stream is estimated to be averaged in about 167.31×103 mol/(km2? a) and tends to be higher in the summer but lower in the winter. During rainfall events, the carbon sink increases rapidly with the increase of discharge. Besides, the sulfuric acids derive from anthropogenic activities have great impact on the dissolution of carbonate rocks, resulting in relatively higher δ13C DIC values, especially in summer, which can reduce carbon sink caused by chemical weathering on carbonate rocks in the basin to a certain degree.

     

  • loading
  • [1]
    Houghton R A. Balancing the Global Carbon Budget[J]. Annual Review of Earth Planetary Sciences, 2007,35:313-347.
    [2]
    袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995,40(13):1210-1213.
    [3]
    Macpherson G L, Robert J A, Blair J M. Increasing shallow ground water CO2 and limestone weathering, Konza Prairie USA[J].Geochimca Cosmochima Acta,2008,72:5581-5599.
    [4]
    袁道先.现代岩溶学与全球变化研究[J].地学前缘,1997,14(1-2):17-24.
    [5]
    Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisums[J].Earth Science Reviews,2010,99:162-172.
    [6]
    Aucour A M, Sheppard S M F, Guyomar O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhone rive system[J].Chemical Geology,1999,159(1-4):87-105.
    [7]
    李思亮,刘丛强,陶发祥,等.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J].地球化学,2004,33(2):165-170.
    [8]
    Liu Z, Groves C, Yuan D, et al. Hydrochemical variations during flood pulses in the southwest China peak cluster karst: impacts of CaCO3-H2O-CO2 interactions[J]. Hydrological Processes, 2004, 18:2423-2437.
    [9]
    李林立,况明生,张远瞩,等.典型表层岩溶泉水短时间尺度动态变化规律[J].水科学进展,2006,17(2):222-226.
    [10]
    Yan Junhua, Wang Yingping, Zhou Guoyi, et al. Carbon uptake by karsts in the Houzhai Basin, Southwest China[J]. Journal of Geophysical Research,2011,116:G04012,10PP.
    [11]
    Spence J, Telmer K. The role of sulfur in chemical weathering and atmospheric CO2 fluxed: Evidence from major ions, δ13CDIC and δ34SO42- in rivers of the Canadian Cordillera[J]. Geochimca et Cosmochima Acta,2005,69(23):5441-5458.
    [12]
    刘丛强,蒋颖魁,陶发祥,等.西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J].地球化学,2008,37(4):404-414.
    [13]
    李军,刘丛强,李龙波,等.硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响[J].地球化学,2010,39(4):305-313.
    [14]
    郭张军,宋汉周.地下水化学组分存在形式及其SI值计算[J].资源环境与工程,2005,19(3):200-202.
    [15]
    韩贵琳,刘丛强.贵州喀斯特地区河流的研究——碳酸盐岩溶解控制的水文地球化学特征[J].地球科学进展,2005,20(4):394-406.
    [16]
    Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[M]. 1996,3rd,edWiley.
    [17]
    杨平恒.岩溶管道含水介质中的水文地球化学特征及悬浮颗粒物运移规律——以青木关地下河系统为例[D].西南大学博士学位论文,2009:29.
    [18]
    巴金,杨洁,王淑凤,等.重庆地区近10年酸雨时空分布和季节变化特征分析[J].气象,2008,39(4):81-88.
    [19]
    彭中贵,陈军,徐放.重庆酸雨与SO2传输之间关系分析[J].重庆环境科学,1989,1l(4):46-51.
    [20]
    张兴波,蒋勇军,邱述兰,等.农业活动对岩溶作用碳汇的影响:以重庆青木关地下河流域为例[J].地球科学进展,2012,27(4):93-102.
    [21]
    Cerling T E, Solomon D K, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimca et Cosmochima Acta,1991,55(11):3403-3405.
    [22]
    Deines P, Langmuir D, Harmon R S. Stable carbon isotope ratios and the existence of a gas phase in thee volution of carbonate ground waters[J]. Geochimca et Cosmochima Acta, 1974, 38, 1147-1164.
    [23]
    Clark I, Fritz P. Environmental Isotopes in Hydrogeology[M]. Lewis Press: Boca Raton, FL., 1997.
    [24]
    Li S L, Liu C Q, Li J, et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints[J]. Chemical Geology,2010:277,301-309.
    [25]
    White A F, Blum A E. Effects of climate on chemical-weathering in watersheds[J]. Geochim Cosmochim Acta,1995,59:1729-1747.
    [26]
    Gislason S R, Oelkers E H, Eiriksdottir E S, et al. Direct evidence of the feedback between climate and weathering[J]. Earth Planet Sci Lett,2009,277:213-222.
    [27]
    Berner R A. Weathering, plants and the long-term carbon cycle[J]. Geochim Cosmochim Acta, 1992, 56: 3225-3231.
    [28]
    Andrews J A, Schlesinger W H. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment[J]. Glob Biogeochem Cycle, 2001, 15: 149-162.
    [29]
    刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(23-3):95-102.
    [30]
    刘再华,GrovesC,袁道先,等.水-岩-气相互作用引起的水化学动态变化研究——以桂林岩溶试验场为例[J].水文地质工程地质,2003,30(4):13-18.
    [31]
    章程,袁道先,曹建华,等.典型表层岩溶泉短时间尺度动态变化规律研究[J].地球学报,2004,25(4):467-471.
    [32]
    唐伟,康志强,殷建军,等.降雨条件下岩溶碳汇的动态变化特征——以桂林毛村地下河为例[J].地球与环境,2011,39(2):161-166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2897) PDF downloads(1775) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return