• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 31 Issue 2
Jun.  2012
Turn off MathJax
Article Contents
GU Ning, WU Jiang-ying. Pale climate significance of δ13C in stalagmite from Nuanhe Cave, Liaoning[J]. CARSOLOGICA SINICA, 2012, 31(2): 107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001
Citation: GU Ning, WU Jiang-ying. Pale climate significance of δ13C in stalagmite from Nuanhe Cave, Liaoning[J]. CARSOLOGICA SINICA, 2012, 31(2): 107-114. doi: 10.3969/j.issn.1001-4810.2012.02.001

Pale climate significance of δ13C in stalagmite from Nuanhe Cave, Liaoning

doi: 10.3969/j.issn.1001-4810.2012.02.001
  • Received Date: 2011-12-29
  • Publish Date: 2012-06-25
  • In light of the U-series dating results, 900 annual laminae, 320 C and O isotopes data and gray level data of stalagmite NH33 from the Nuanhe Cave, δ13C and gray level sequence of the stalagmite in recent 1000 years in the Holocene Optimun (8638±60 - 7748±53 a BP) are established. The paleo-climate significance of δ13C is confirmed by the consistent changing trend between the detail features of the gray series and the carbon isotope. On centennial-scale, stalagmite δ13C mainly corresponds to temperature changes and is driven by changes in ground surface biomass. Paleo-environments interpreted by the stalagmite-series can be divided into three climate-stages, that is well fitted with the pollen record at the same time: (1) Warm stage (8655 - 8366 a BP); (2) Cold stage (8366 - 8048 a BP); (3) Moderately warm stage (8048 - 7756 a BP). Among them, the second stage coincides with the “8.2 ka BP cold event” recorded in the Greenland ice cores. Some non-climate factors are also contained in stalagmite δ13C, which is led by changes in dissolved CaCO3 of the wall rock affected mainly by water seepage rate. Making regression analysis on the stalagmite δ13C and gray level data can effectively avoid the non-climate factors led by the hydrodynamic conditions.

     

  • loading
  • [1]
    张向华.中全新世神农架高分辨率的石笋气候记录[D].南京:南京师范大学地理科学学院,2005.
    [2]
    Hendy C H. The isotopic geochemistry of speleothems. PartⅠ. The calculation of the effects of different model of formation on the isotopic composition of speleothems and their applicability as paleoclimate indicators[J]. Geochimica et Cosmochimica Acta, 1971,35(8):801-824.
    [3]
    Dorale J A, González L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa[J]. Science, 1992, 258: 1626-1630.
    [4]
    Coplen T B, Winograd I J, Landwehr J M, et al. 500000-year stable carbon isotopic record from Devils Hole, Nevada[J]. Science, 1994, 263:361-365.
    [5]
    Baker R G, Bettis III E A, Schwert D P, et al. Holocene paleoen-vironments of Northeast Iowa[J]. Ecological Monographs,1996,66:203-234.
    [6]
    Dorale J, Edwards R, Ito E, et al. Climate and vegetation history of the midcontinent from 75-25ka: a speleothem record from Crevice Cave, Missouri, USA[J].Science,1998,282:1871-1874.
    [7]
    罗维均,王世杰,刘秀明.洞穴现代沉积物δ13C值的生物量效应及机理探讨以贵州4个洞穴为例[J].地球化学,2007,36(4):344-350.
    [8]
    Zhang M, Yuan D, Lin Y. A 6000-year high-resolution climatic record from a stalagmite in Xiangshui cave, Guilin, China[J].Holocene,2004,14(5):697-702.
    [9]
    Hellstrom J, Mc Culloch M, Stone J. A detailed 31000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems[J]. Quatern Res, 1998, 50(2): 167-178.
    [10]
    张美良,程海,林玉石,等.贵州荔波1.5万年以来石笋高分辨率古气候环境记录[J].地球化学,2004,33(1):65-74.
    [11]
    Hughen K A, Eglinton T I, Li X, et al. A brupt Tropical Vegetation Response to Rapid Climate Changes[J]. Science,1955,304:954-1959.
    [12]
    覃嘉铭,林玉石,张美良,等.桂林全新世石笋高分辨率δ13C记录及其古生态意义[J].第四纪研究,2000,20(4):351-358.
    [13]
    覃嘉铭,袁道先,程海,等.贵州荔波董歌洞D3石笋碳氧稳定同位素及微量元素记录的环境变化[J].地球学报,2004,25(6):625-632.
    [14]
    赵成,王兆荣,陶凯,等.贵州龙泉洞石笋在距今1600至250年间的古气候古环境重建[J].自然杂志,2004,26(4):209-214.
    [15]
    张美良,朱晓燕,林玉石,等.洞穴石笋的δ13C记录研究[J].广西科学,2006,13(1):48-51.
    [16]
    Kutabach J E, Webb T. Conceptual basia for understanding Late-Quaternaty climates[A]. Wright H E, et al. Global limates since the Last Glacial Maximum, Minneapolis: University og Minneaota Press,1993:5-11.
    [17]
    王国安.稳定碳同位素在第四纪古环境研究中的应用[J].第四纪研究,2003,23(5):471-484.
    [18]
    刘卫国,宁有风,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J].中国科学(D辑),2002,32(10):830-836.
    [19]
    李廷勇,李红春,袁道先.重庆新崖洞XY6石笋4.5ka以来高分辨率δ18O、δ13C记录的气候变化[J].中国岩溶,2006,25(2):95-100.
    [20]
    王秋良,谢远云,梅惠.湖泊沉积物中有机碳同位素特征及其古气候环境意义[J].安全与环境工程,2003,10(4):16-21.
    [21]
    Wang H, Ambrose S H, Li C, et a1. Paleosol stable isotope evidence for early hominid occupation of east Asian temperate environments[J].Quaternary Research,1997,48:228-238.
    [22]
    Wang H, Follme L R. Proxy of monsoon seasonality in carbon isotopes from paleaosols of the southern Chinese Loess Plateau[J]. Geology,1998,26:987-990.
    [23]
    郭广猛.青藏高原现生禾本科植物的δ13C与降水的关系研究[J].地学前缘,2005,12(2):62-162.
    [24]
    旺罗,吕厚远,吴乃琴,等.青藏高原现生禾本科植物的δ13C与海拔高度的关系[J].第四纪研究,2003,23(5):573-580.
    [25]
    李玉梅,陈践发,罗健,等.植物中单体烷烃碳同位素组成与其生长环境的关系[J].地质学报,2000,74(3):273-278.
    [26]
    Korner C, Farquhar G D, Wong C. Carbon isotope discrimination by follows latitudinal and altitudinal trends[J].Oecologia,1991,88(1):30-40.
    [27]
    Morecroft M D, Woodward F I. Experimental investigations on the environment determination of δ13C at different altitudes [J]. Journal of Experimental Botany, 1990, 41(10): 1303-1308.
    [28]
    李廷勇,李红春,李俊云.重庆芙蓉洞洞穴沉积物δ13C、δ18O特征及意义[J].地质评论,2008,54(5):712-720.
    [29]
    王建明,王建力,李廷勇.洞穴石笋δ18O与δ13C气候意义研究[J].热带地理,2008,28(5):395-399.
    [30]
    Shen C, Edwards L R, Cheng H. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry [J]. Chemical Geology, 2002,185:165-178.
    [31]
    McCrea J M. On the isotopic chemistry of carbonates and a pa1eotemperature scale [J]. The Journal of Chemical Physics,1950,18:849-857.
    [32]
    Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J].Nature,1993,364:218-220.
    [33]
    Bond G, Showers W, Cheseby M, et al. A pervasive millennial scale cycle in North Atlantic Holocene and glacial climates [J].Science,1997,278:1257-1266.
    [34]
    Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability: Aprominent, wide spread event 8200 yr ago [J]. Geology,1997,25(6):483-486.
    [35]
    Hughen K A, Overpeck J T, Peterson L C, et al. Rapid climate changes in the tropical Atlantic region during the last deglaciation [J]. Nature,1996,380:51-54.
    [36]
    deMenocal P, Ortiz J, Guilderson T, et al. Coherent high- and low-latitude climate variability during the Holocene warm period [J].Science,2000:2198-2202.
    [37]
    Dorthe Klitgaard-Kristensen, Hans Petter Sejrup, Haflidi Haflidason, et al. A regional 8200 cal. yr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation?[J]. Journal of Quaternary Science,1998,13(2):165-169.
    [38]
    Grafenstein Uvon, Erlenkeuser H, Müller J, et al. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland [J]. Climate Dynamics, 1998, 14(2): 73-81.
    [39]
    Hu F S, Slawinski D, WrightJr H E, et al. A brupt changes in North American climate during early Holocene times[J].Nature,1999,400:437-440.
    [40]
    Atte Korhola, Jan Weckstr?m, Lasse Holmstr?m, et al. A Quantitative Holocene Climatic Record from Diatoms in Northern Fennoscandia [J].Quaternary Research,2000,54(2):284-294.
    [41]
    Gilson J R, Macarthney E. Luminescence of speleothems from Devon UK. The presence of organic activators [J]. Ashford Speleological Society Journal,1954,6:8-11.
    [42]
    Gascoyne M. Trace elements incalcite: The only cause of speleothem color? [J]. National Speleological Society Bulletin,1978:90.
    [43]
    Shopov Y Y. Laser luminescent microzonal analysis: A new method for investigation of the alterations of climate and solar activity during the Quaternary [A]. In: Kiknadze T, eds. Problems of Karst study in Mountainous Countries [C]. Tbilisi: Georgia, Metsniereba, 1987:228-232.
    [44]
    White W B, Brennan E S. Luminescence of speleothems due to fulvic acid and other activators[A]. In: 10th Proceedings of the International Speleology Congress[C].1989,1:212-214.
    [45]
    秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义——II.灰度的年际变化[J].中国科学(D辑),2000,30(3):239-248.
    [46]
    秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义——I.微层显微特征[J].中国科学(D辑),1998,28(1):91-96.
    [47]
    Cosford J, Qing H, Mattey D, et al. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2009:235-244.
    [48]
    Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems [J]. Geochimicaet Cosmochimica Acta, 2001,65(20):3443-3457.
    [49]
    Genty D, Blamart D, Ouahdi R, et al. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J].Nature,2003,421:833-837.
    [50]
    Baldini J, Mc Dermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England [J]. Earth and Planetary Science Letters, 2005, 240:486-494.
    [51]
    Denniston R, Gonzalez L, Asmerom Y, et al. Speleothem carbon isotopic records of Holocene environments in the Ozark Highlands, USA[J].Quaternary International,2000,67:21-27.
    [52]
    李红春,顾德隆,DortePaulsen.陕南石笋稳定同位素记录中的古气候和古季风信息[J].地震地质,2000,22(增刊):63-78.
    [53]
    刘启明.贵州凉风洞石笋的古气候记录与古生态环境意义[D].北京:中国科学院研究生院博士学位论文,2003.
    [54]
    孔兴功,汪永进,吴江滢.南京葫芦洞石笋δ13C对冰期气候的复杂响应与诊断[J].中国科学D辑地球科学,2005,35(11):1047-1052.
    [55]
    Baker A, Ito E, Smart P L, et al. Elevated 13-C in speleothem and implications for palaeovegetation studies [J].Chem. Geol., 1997,136:263-270.
    [56]
    Bar-Marthews M, Avner A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional evernts: Soreqcave, Israel[J]. Earth and Planetary Science Letters, 1999, 166: 85-89.
    [57]
    Bar-Marthews M, Avner A, Kaufman A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel [J]. Chem. Geol., 2000,169:145-156.
    [58]
    Plagnes V, Causse C, Genty D, et al. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France ) [J]. Earth and Planetary Science Letters, 2002, 201:87-103.
    [59]
    林瑞芬,卫克勤.草海ZHJ柱样沉积物有机质的δ13C记录[J].地球化学,2000,29(4):390-396.
    [60]
    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science,2001,294:2345-2348.
    [61]
    王秀玲,介冬梅,李瑛.下辽河平原全新世孢粉组合与古气候演化研究[J].河南科学,2010,28(7):794-798.
    [62]
    Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene [J]. Earth and Planetary Science Letters, 2003, 211: 371-380.
    [63]
    王杰,周尚哲,许刘冰.“8.2kaBP冷事件”的研究现状展望[J].冰川冻土,2005,27(4):520-527.
    [64]
    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate[J].Science,2005,308:854-857.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4667) PDF downloads(1998) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return