• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 30 Issue 4
Dec.  2011
Turn off MathJax
Article Contents
ZHAO Kuan, WU Yan-you. Influence of root-secreted organic acid on plant and soil carbon sequestration in karst ecosystem[J]. CARSOLOGICA SINICA, 2011, 30(4): 466-471. doi: 10.3969/j.issn.1001-4810.2011.04.019
Citation: ZHAO Kuan, WU Yan-you. Influence of root-secreted organic acid on plant and soil carbon sequestration in karst ecosystem[J]. CARSOLOGICA SINICA, 2011, 30(4): 466-471. doi: 10.3969/j.issn.1001-4810.2011.04.019

Influence of root-secreted organic acid on plant and soil carbon sequestration in karst ecosystem

doi: 10.3969/j.issn.1001-4810.2011.04.019
  • Received Date: 2011-10-24
  • Publish Date: 2011-12-25
  • Root-secreted organic acid is an important dynamic source of soil organic acid, the carbon from photosynthetic fixation is the most active form in the soil carbon flow. Root-secreted organic acid is a kind of plant and soil carbon sequestration with regulating action. On one hand, plant roots increases the content of root-secreted organic acid which affected the production and flux of carbon sequestration under karst soil environment, directly regulating carbon sequestration of plant and soil. On the other hand, root-secreted organic acid has a profound impact on soil nutrient availability and nutrient cycle, and microbial activity by affecting a series of dynamic chemical and biological processes in the soil, which directly impacts on soil carbon sequestration, thereby, indirectly affecting carbon sequestration of the plants. Therefore, root-secreted organic acid plays an important role on carbon sequestration in karst ecosystem.

     

  • loading
  • [1]
    Jones D L. Organic acids in the rhizosphere: A critical review[J]. Plant and Soil, 1998, 205: 25-44.
    [2]
    崔晓阳,宋金凤.凋落物源有机酸及其地下生态效应[M].科学出版社,2008.
    [3]
    苏维词,杨汉奎.贵州岩溶区生态环境脆弱性类型的初步划分[J].环境科学研究,1994,7(6):35-41.
    [4]
    苏维词,朱文孝.贵州喀斯特山区生态环境脆弱性分析[J].山地学报,2000,18(5):429-434.
    [5]
    周游游,蒋忠诚,韦珍莲.广西中部喀斯特干旱农业区的干旱程度及干旱成因分析[J].中国岩溶,2003,22(2):144-149.
    [6]
    王平,盛连喜,燕红,等.植物功能性状与湿地生态系统土壤碳汇功能[J].生态学报,2010,30(24):6990-7000.
    [7]
    Neumann G.Root Exudates and Nutrient Cycling. In: Marschner P, Rengel Z (eds.) Nutrient Cycling in Terrestrial Ecosystems[M]. Springer-Verlag Berlin Heidelberg,2007:123 - 157.
    [8]
    丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能[J].土壤,2005,37(3):243-250.
    [9]
    贾玲侠,李绍才,赵秀兰.根系分泌物活化岩石养分[J].微量元素与健康研究,2006,23(3):52-54.
    [10]
    Jones D L, Darrah P R. Role of root derived organic-acids in the mobilization of nutrients from the rhizosphere[J]. Plant and Soil,1994, 166: 247-257.
    [11]
    Jones D L, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163: 459-480.
    [12]
    Kraffczyk I, Trolldenier G,Beringer H. Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms[J]. Soil Biology & Biochemistry, 1984,16: 315 -322.
    [13]
    Reid C P P. Assimilation, distribution and root exudation of 14C by ponderosa pine seedlings under induced water stress[J]. Plant Physiology, 1974, 54: 44-49.
    [14]
    Henry A, Doucette W, Norton J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environment Quality, 2007, 36: 904-912.
    [15]
    Darrah P R. Rhizodeposition under ambient and elevated CO2 levels[J]. Plant and Soil, 1996, 187: 265-275.
    [16]
    Lee J A. The calcicole-calcifuge problem revisited[J]. Advances in Botanical Research , 1998, 29: 1-30.
    [17]
    Hajiboland R, Yang X E, R?mheld V. Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice wheat and rye[J]. Plant and Soil, 2003, 250: 349-357.
    [18]
    Yang X, R?mheld V, Marschner H. Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice varieties (Oryza sativa L.)[J]. Plant and Soil, 1994, 164: 1-7.
    [19]
    徐晓燕,杨肖娥,杨玉爱.重碳酸氢根对水稻根区重要有机酸分布的影响与水稻品种耐缺Zn关系的研究[J].作物学报,2001,27(3):387-391.
    [20]
    Gardner W K, Barber D A, Parberry D G. The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface in enhanced[J]. Plant Soil ,1983, 70: 107-124.
    [21]
    Hoffland E, Van Den Boogaard R, Nelemans J,et al. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants[J]. New Phytologist, 1992,122: 675 - 680.
    [22]
    Lipton D S, Blanchar R W, Blevins D G. Citrate, malate, and succinate concentration in exudates from P-sufficient and P stressed Medicago sativa L. Seedlings[J]. Plant Physiology,1987, 85: 315-317.
    [23]
    Treeby M, Marschner H, R?mheld V. Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators[J]. Plant and Soil 1989, 114: 217-226.
    [24]
    Mench M, Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L[J]. Plant and Soil, 1991, 132: 187-196.
    [25]
    Neumann G, R?mheld V. The release of root exudates as affected by the plant physiological status[C]//Pinton R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Dekker, New York, 2000: 41-89.
    [26]
    David L. Jones, Peter R. Darrah. Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow[J]. Plant and Soil,1995, 173: 103-109.
    [27]
    Str?m L, Olsson T, Tyler G. Differences between calcifuge and acidifuge plants in root exudation of low molecular weight organic acids. Plant and Soil, 1994,167: 239 -245.
    [28]
    陆文龙,张福锁,曹一平,等.低分子量有机酸对石灰性土壤磷吸附动力学影响[J].土壤学报,1999,36(2):189-197.
    [29]
    介晓磊,李有田,庞荣丽,等.低分子量有机酸对石灰性土壤磷素形态转化及有效性的影响[J].土壤通报,2005,36(6):856-860.
    [30]
    Strom L, Owen A G, Douglas L G, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biology & Biochemistry, 2005, 37: 2046-2054.
    [31]
    张崇玉,关勤农.柠檬酸对石灰性土壤磷的释放效应[J].干旱地区农业研究,2004,22(2):17-19.
    [32]
    Parker D R, Chaney R L, Norvell W A. Chemical equilibria models: Applications to plant research[J]. In Chemical Equilibria and Reaction Models, Special Publication 42. Eds. R HLoeppert, A P Schwab and S Goldberg. 1995:163 - 200. SSSA-ASA,Madison,WI.
    [33]
    Dinkelaker B, Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant, Cell and Environment, 1989, 12: 285-292.
    [34]
    Khademi Z, Jones D L, Malakouti M J, et al. Organic acids differ in enhancing phosphorus uptake by Triticum aestivum L.—effects of rhizosphere concentration and counterion[J]. Plant and Soil, 2010, 334: 151-159.
    [35]
    吴沿友,刘丛强,王世杰.诸葛菜的喀斯特适生性[M].贵阳,贵州科技出版社,2004,1-153.
    [36]
    Veneklaas E J, Stevens J, Cawthray G R, et al. Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake[J]. Plant and Soil, 2003, 248: 187-197.
    [37]
    Johnson J F, Allan D L, Vance C P, et al. Root carbon dioxide fixation by phosphorus- deficient Lupinus albus: Contribution to organic-acid exudation by proteoid roots[J]. Plant Physiology, 1996, 112: 19-30.
    [38]
    Dinkelaker B, R?mheld V, Marschner H. Citric acids excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant Cell Environment, 1989, 12: 285-292.
    [39]
    Degryse F, Verma V K, Smolders E. Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil[J]. Plant and Soil, 2008, 306: 69-84.
    [40]
    Dousset S, Morel J L, Bitton A G. Copper binding capacity of root exudates of cultivated plants and associated weeds[J]. Biology and Fertile of Soils, 2001, 34: 20-23.
    [41]
    McKenzie B M, Thorsen M K, Hopkins D W, et al. Resilience of microorganisms and aggregation of a sandy calcareous soil to amendment with organic and synthetic fertilizer[J]. Soil Use and Management , 2010, 26 (2): 149-157.
    [42]
    Bavaresco L, Colla R, Fogher C. Different responses to root infection with endophytic microorganisms of Vitis vinifera L. cv. Pinot blanc grown on calcareous soil[J]. Journal of plant nutrition, 2000, 23 (8): 1107-1116.
    [43]
    Saeki Y, Yamakawa T, Ikeda M, et al. Effects of root exudates of Rj2Rj3-and Rj4-genotype soybeans on growth and chemotaxis of bradyrhizobium japonicum[J]. Soil Science Plant Nutrition, 1996, 42 (2): 413-417.
    [44]
    王树起,韩晓增,乔云发,等.缺磷条件下低分子量有机酸对大豆氮积累和结瘤固氮的影响[J].应用生态学报,2009,20(5):1079-1084.
    [45]
    张淑香,高子勤.连作障碍与根际微生态研究Ⅱ,根系分泌物与酚酸物质应用[J].应用生态学报,2000,11(1):152-156.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2407) PDF downloads(2592) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return