• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 30 Issue 2
Jun.  2011
Turn off MathJax
Article Contents
ZU Qi, YUAN Xi-ping, MO Yuan-fu, YUAN Lei. Surface features’ information extraction from SPOT images with object-oriented classification method[J]. CARSOLOGICA SINICA, 2011, 30(2): 227-232. doi: 10.3969/j.issn.1001-4810.2011.02.017
Citation: ZU Qi, YUAN Xi-ping, MO Yuan-fu, YUAN Lei. Surface features’ information extraction from SPOT images with object-oriented classification method[J]. CARSOLOGICA SINICA, 2011, 30(2): 227-232. doi: 10.3969/j.issn.1001-4810.2011.02.017

Surface features’ information extraction from SPOT images with object-oriented classification method

doi: 10.3969/j.issn.1001-4810.2011.02.017
  • Received Date: 2010-10-24
  • Publish Date: 2011-06-25
  • With eCognition software of the object-oriented classification method, different segmentation parameters for each surface features in the images is set in the study area of Zhaidi, Guilin. When initial segmentation parameter is 30, shape is 0.1, color is 0.9, compactness is 0.7 and smoothness is 0.3, vegetation, non-vegetation and water body can be parted accurately. Further separation for vegetation and non-vegetation according to the established classification hierarchy, it is concluded that the results close to ideal if the selected segmentation scale is 80 and 50. Classification to the surface features that have been cut by means of eCognition and manually modification has resulted in relatively high accuracy – the general accuracy up to 96.28% and the Kappa coefficient 95.23%. Contrasting with the result by traditional way, the object-oriented classification method is of greater advantage in classifying high-resolution remote sensing data.

     

  • loading
  • [1]
    Wang Fangju. Fuzzy supervised classification of remote sensing images[J]. IEEE Trans. On Geosci. and Remote Sensing,1990,28(2):194-201.
    [2]
    Benediktssn J A, Swain P H and Ersoy O K. Neural network approaches versus statistical methods in classification of multi source remote sensing data[J].IEEE Trans. On Geosci. and Remote Sensing,1990,28(4):540-552.
    [3]
    Ton J, Sticklen J, Jain A. K. Knowledge-Based segmentation of Land-sat images [J].IEEE Transaction on Geoscience and Remote Sensing,1991,29(2):223-231.
    [4]
    Lobo A, Chic O, Casterad A. Classification of Mediterranean crops with multi-sensor data: per-pixel versus per-object statistics and image segmentation[J].International Journal of Remote Sensing,1996(17):2358-2400.
    [5]
    Hofamnn P. Detection in formal settlements from IKONS image data using methods of object oriented image analysis: an example from Cape Town(South Africa)[C]Remote Sensing of Urban Areas/F Enerkundung in Urbanen Raumen,2001:41-42.
    [6]
    杜凤兰.北京大兴区高分辨率遥感土地利用分类及不确定性研究[D].南京大学,2005,5.
    [7]
    曹宝,秦其明.面向对象方法在SPOT5遥感图像分类中的应用——以北京市海淀区为例[J].地理与地理信息科学,2006,22(2):46-49.
    [8]
    QinYu, Peng Gong, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J].Photogram metric Engineering and Remote Sensing,2006,72(7):799-811.
    [9]
    丁晓英.eCognition在土地利用项目中的应用[J].测绘与空间地理信息系统,2005,28(6):116-120.
    [10]
    黎新亮,赵书河,芮一康,等.面向对象高分辨遥感影像分类研究[J].遥感应用,2007,6:58-61.
    [11]
    曹雪,柯长青.基于对象级的高分辨率遥感影像分类研究[J].应用技术,2006,5:27-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (6366) PDF downloads(5231) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return