• Included in CSCD
  • Chinese Core Journals
  • Included in WJCI Report
  • Included in Scopus, CA, DOAJ, EBSCO, JST
  • The Key Magazine of China Technology
Volume 30 Issue 1
Mar.  2011
Turn off MathJax
Article Contents
DUAN Fu-cai, KONG Xing-gong. Altitude effect on δ18O in stalagmites from Mt. Shennongjia, central China[J]. CARSOLOGICA SINICA, 2011, 30(1): 101-104. doi: 10.3969/j.issn.1001-4810.2011.01.016
Citation: DUAN Fu-cai, KONG Xing-gong. Altitude effect on δ18O in stalagmites from Mt. Shennongjia, central China[J]. CARSOLOGICA SINICA, 2011, 30(1): 101-104. doi: 10.3969/j.issn.1001-4810.2011.01.016

Altitude effect on δ18O in stalagmites from Mt. Shennongjia, central China

doi: 10.3969/j.issn.1001-4810.2011.01.016
  • Received Date: 2011-01-11
  • Publish Date: 2011-03-25
  • Proxy data δ18O reflecting the oxygen isotope composition of meteoric precipitation are widely used in reconstructions of continental pale climate. Nevertheless, there has been a general debate that precipitation amount or temperature dominates the speleothemδ18O signal. To assist interpretation of speloethem δ18O time series, it is necessary to understand the impacts of main oxygen isotope fractionation during moisture transfer. Here we present the δ18O records of stalagmites from three caves(Heilong, Qingtian and Sanbao caves)along a transect of progressively increasing altitudes(1250~2250 m)in Shengnongjia(31.5~31.7° N,110.2~110.6°E),central China. We confirm the effect of altitude on stalagmite δ18O that mean stalagmiteδ18O values from two different same time period decrease with increasing cave altitude at a rate of about -0.1‰/100 meters, indicating that the oxygen isotope compositions of precipitation undergoes fractionation during the moisture transfer from low to high altitude. In fact, modern meteorologic precipitation data show that altitude effect has an effect on the δ18O change at a rate of -0.2‰/100 meters, which exceeds more the speleothem result. Consequently, in addition to the isotopic influence of precipitation on stalagmite δ18O, temperature differences between altitudes contribute greatly to δ18O variation. In combining with annual averaging temperature in caves, an average dδ18O p/dT of approximately -0.25‰/℃ was calculated, which agrees with the result of isotopic equilibrium fractionation by O’Neil.

     

  • loading
  • [1]
    Yuan D X, Cheng H, Edwards R L,et al.Timing,duration, and transitions of the Last Interglacial Asian Monsoon[J].Science,2004,304:575-578.
    [2]
    Wang Y J, Cheng H, Edwards R L,et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave,China[J].Science,2001,294:2345-2348.
    [3]
    Wang Y J, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature,2008,451:1090-1093.
    [4]
    Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J].Science, 2009, 326:248-252.
    [5]
    Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters,2008,266:221-232.
    [6]
    Zhang P Z,Cheng H,Edwards R L,et al. A Test of climate, sun,and culture relationships from an1810-year Chinese cave record[J].Science,2008,322:940-942.
    [7]
    Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J].Science,2003,300:1737-1739.
    [8]
    Goede A, Veeh H H, Ayliffe L A.Late Quaternary palaeotemperature records for two Tasmanian speleothems[J].Australian Journal of Earth Sciences,1990,37:267-278.
    [9]
    Burns S J, Fleitmann D, Matter A, et al. Speleothem evidence from O man for continental pluvial events during interglacial periods[J].2001,Geology,29: 623-626.
    [10]
    Onac B P, Constantin S, Lundberg J,et al. Isotopic climate record in a Holocene stalagmite from Ulisor Cave(Romania)[J].Journal of Quaternary Science,2002,17: 319-327.
    [11]
    Gascoyne M. Palaeoclimate determination from cave calcite deposits[J]. Quaternary Science Reviews,1992,11:609-632.
    [12]
    Hellstrom J, McCulloch M, Stone J. A detailed 31000 year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems[J]. Quaternary Research,50:167-178.
    [13]
    Frumkin A, Carmi I, Gopher A, et al. A Holocene millennial scale climatic cycle from a speleothem in Nahal Qanah Cave, Israel[J]. The Holocene,1999,9:677-682.
    [14]
    Frumkin A, Ford D C, Schwarcz H P. Continental palaeoclimatic record of the last 170000 years in Jerusalem[J].Quaternary Research,1999,51:3117-327.
    [15]
    Dong J G, Wang Y J, Cheng H, et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt.Shennongjia, central China[J]. The Holocene, 2010,20:257-264.
    [16]
    张春霞,张茂恒,李偏,等.2592-1225aB.P.湖北神农架石笋氧同位素记录及区域气候意义[J].地理科学,2010,30:950-954.
    [17]
    Rozanski K, Araguás-Aráguás L, Gonfiantini R.Isotopic patternsin modern precipitation. In:Swart P K,Lohmann K C, McKenzie J(Eds),et al. Climate Change in Continental Isotopic Records.Washington D C: Geophysical Monograph, American Geophysical Union,1993,78:1-36.
    [18]
    Aravena R, Suzuki O, Pena H, et al.Isotopic composition and origin of the precipitation in Northern Chile[J]. Applied Geochemistry,1999,14:411-422.
    [19]
    Tian L, Yao T,Schuster P F,et al. Oxygen-18 concentration in recent precipitation and ice cores on the Tibetan Plateau[J]. Journal of Gephysical Research,2003,108(D9):4293.
    [20]
    Wang Y J, Cheng H, Edward R L, et al. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate[J].Science,2005,308:854-857.
    [21]
    谭明.环流效应:中国季风区石笋氧同位素短尺度变化的气候意义——古气候记录与现代气候研究的一次对话[J].第四纪研究,2009,29:851-862.
    [22]
    Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records: A re-assessment[J]. The Holocene,2008,18:861-866.
    [23]
    李彬,袁道先,林玉石,等.桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J].中国科学(D辑),2000,30:81-87.
    [24]
    李红春,顾德隆,Dorte Paulsen,等.陕南石笋稳定同位素记录中的古气候和古季风信息[J].地震地质,2000,22:63-78.
    [25]
    Yang X X, Xu B Q, Yang W,et al.Study of altitudinal lapse rates of δ18O in precipitation/river water with seasons on the southeast Tibetan Plateau[J].Chinese Science Bulletin,2009,54:2742-2750.
    [26]
    Gonfiantini R, Roche MA, Olivry J C,et al. The altitude effect on the isotopic composition of tropical rains[J].Chemical Geology,2001,181:147-167.
    [27]
    Poage M A, Chamberlain C P.Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of pale elevation change[J]. American Journal of Science,2001,301:1-15.
    [28]
    Yao T D,Zhou H, Yang X X.Indian monsoon influences altitude effect of δ18O in precipitation/river water on the Tibetan Plateau[J].Chinese Science Bulletin,2009,54:2724-2731.
    [29]
    McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review[J].Quaternary Science Reviews,2004,23:901-918.
    [30]
    Johnson K R, Ingram B L.Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for pale climate reconstructions[J]. Earth and Planetary Science Letters,2004,220:365-377.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4059) PDF downloads(3087) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return